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A method that some practitioners use to estimate risk measures such as Value-at-Risk (VaR) and Tail 
Value-at-Risk (TVaR) for fat-tailed distributions is make use of the Cornish-Fisher asymptotic 
expansion, see derivation of the Cornish-Fisher expansion or MnCornishFisher4. This is a methodology 
for predicting the shape of a (univariate) distributional form merely from the moments of the 
distribution, most commonly merely its mean, standard deviation, skew and (excess) kurtosis. 
 
However, Kemp (2009) notes that the Cornish-Fisher approach has some undesirable features 
including not necessarily giving appropriate weight to different parts of the distributional form. In 
effect it can result in estimation of outlying quantiles of the distribution more from the distributional 
shape in the centre of the distribution than from its shape in its tails, which is counterintuitive and 
liable to error. Kemp proposes a more empirical approach in which the distributional form and hence 
the risk measure is derived from a curve that is directly fitted to the shape of the quantile-quantile 
plot, possibly giving greater weight to observations in this curve fitting process to regions of the 
distribution that the user is most interested in analysing. His suggested curve form to use for this 
purpose is a cubic, since the fourth moment Cornish-Fisher approach is in effect also characterised by 
a cubic quantile-quantile plot but not necessarily one giving the most suitable weights to different 
parts of the distributional form.  
 
As noted in Kemp (2009) such an approach also simplifies computation of TVaR risk measures. 
 
Suppose the quantile-quantile plot (versus the corresponding standardised normal distribution) takes 
a cubic form, i.e. is of the form 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3. Not all choices of 𝑎0, … , 𝑎3 
correspond to a valid probability distribution. Real vaued probability distributions must have 
monotonically non-decreasing cumulative distribution functions, which in this instance means that 

𝑓′(𝑥) ≡ 𝑑𝑓 𝑑𝑥⁄  needs to be non-decreasing for all 𝑥, which requires 𝑎3 ≥ 0 and 𝑎1 − 𝑎2
2 3𝑎3⁄ ≥ 0. 

 
If the cubic does correspond to a valid probability distribution then the VaR and TVaR of the 
distribution, for a given confidence level 𝑦, are defined as follows, where 𝑝(𝑥) is the distribution’s 
probability density function (assuming that we adopt the same definition for TVaR as is used in the 
illustrative chart below and suitably rebase the 𝑥-axis, i.e. here set 𝐵 = 0): 
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http://www.nematrian.com/TVaRForCubicQuantileQuantileRelationships.aspx
http://www.nematrian.com/ValueAtRisk.aspx
http://www.nematrian.com/TailValueAtRisk.aspx
http://www.nematrian.com/TailValueAtRisk.aspx
http://www.nematrian.com/CornishFisherDerivation.aspx
http://www.nematrian.com/MnCornishFisher4.aspx
http://www.nematrian.com/References.aspx?Ref=Kemp2009
http://www.nematrian.com/References.aspx?Ref=Kemp2009


 
 
At first sight these integrals look quite complicated to evaluate, since they appear to require us to 
derive 𝑝(𝑥). However we note that in this instance the following relationship applies for an arbitrary 
𝑔(𝑥) satisfying appropriate regularity conditions, where 𝑞(𝑥) is the probability density function of the 
corresponding normal distribution (with, say, mean 𝜇 and standard deviation 𝜎) and 𝑁−1(𝑧) is the 
standard inverse normal function: 
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VaR corresponds to the case where 𝑔(𝑥) = 1, i.e. can be evaluated, as we might expect as: 
 

𝑁−1 (
−𝑥 − 𝜇

𝜎
) 

 

TVaR corresponds to the case where 𝑔(𝑥) = − 𝑥 𝑘⁄ , i.e. 𝑔(𝑓(𝑥)) = −(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3) 𝑘⁄  

and thus can be derived analytically (as a function of 𝑧, and deeming 𝑁−1(𝑧) to be ‘analytic’) using 
methodologies set out in integrating piecewise polynomials against a Gaussian probability density 
function. 
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http://www.nematrian.com/MnInverseNormal.aspx
http://www.nematrian.com/IntegrationOfPieceWisePolynomialsAgainstAGaussianPDF.aspx
http://www.nematrian.com/IntegrationOfPieceWisePolynomialsAgainstAGaussianPDF.aspx

