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Abstract 
 
In the pages set out below we explore stable distributions. A special case is the normal distribution. 
Stable distributions are also called Levy stable or (if not normal) stable Paretian distributions. Stable 
distributions other than the normal distribution are fat-tailed and may be skewed. As with the 
normal distribution there are theoretical justifications for using them to model financial data, if the 
returns on the exposures being modelled can be expected to arise from a large number of smaller 
innovations with suitable characteristics. 
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1. Introduction 
[StableDistributions1] 
 
1.1 Stable distributions are a class of probability distributions that have interesting theoretical 
and practical properties that make them potentially useful for modelling financial data. In a sense 
that we will explore further below, they generalise the Normal distribution. They also allow fat tails 
and skewness, characteristics that are also frequently observed in financial data. Traditionally they 
have been perceived to be subject to the practical disadvantage that they have infinite variances 
(apart from the special case of the Normal distribution) and thus are not particularly easy to 
manipulate mathematically. However, more recently, mathematical tools and programs have been 
developed that simplify such manipulations. 
 
1.2 Whether stable distributions are actually good at modelling financial data is not something 
that we explore in depth in these pages. Longuin (1993), when analysing the distribution of U.S. 
equity returns, concluded that their distribution was not sufficiently fat-tailed to be adequately 
modelled by Levy stable distributions, even if it was fatter tailed than implied by the normal 
distribution. Moreover, implicit within the theoretical justification for (non-Normal) stable 
distributions in such a context is an assumption that aggregate returns arise from the combined 
impact of a large number of smaller independent innovations, so that a generalisation of the Central 
Limit Theorem applies, see Section 4. Fat-tailed behaviour in the distribution of aggregate returns in 
line with stable laws can then be expected to arise if it is assumed that each of these smaller 
innovations is also (suitably) fat-tailed. The challenge is that this is not necessarily how fat tails arise 
in aggregate return data. Fat tails may instead arise partly or wholly due to distributional mixtures, 
e.g. regime shifts or time-varying volatility, or from one-off (systemic) ‘shocks’ that cannot be 
conceptually decomposed in to lots of smaller independent elements, see e.g. Kemp (2009). The 
latter might include the impact of an aggregate loss of risk appetite (and feedback effects that might 
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then arise because of changed perceptions amongst market participants regarding the views of 
others). 
 
1.3 The implicit assumption underlying stable distributions referred to in the previous paragraph 
is revealed by their defining characteristic, and the reason for the term stable, which is that they 
retain their shape (suitably scaled and shifted) under addition. The definition of a stable distribution 
is that if 𝑋, 𝑋1, 𝑋2, … , 𝑋𝑛 are independent, identically distributed random variables coming from such 
a distribution, then for every 𝑛 we have the following relationship for some constants 𝑐𝑛 > 0 and 
𝑑𝑛: 
 

𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 ≜ 𝑐𝑛𝑋 + 𝑑𝑛 
 
Here ≜ means equality in distributional form, i.e. the left and right hand sides have the same 
probability distribution. The distribution is called strictly stable if 𝑑𝑛 = 0 for all 𝑛. Some authors use 
the term sum stable to differentiate from other types of stability that might apply. 
 
1.4 Normal distributions satisfy this property, indeed they are the only distributions with finite 
variance that do so. Other probability distributions that exhibit the stability property described 
above include the Cauchy distribution and the Levy distribution. 
 
1.5 The class of all distributions that satisfy the above property is described by four parameters, 
(𝛼, 𝛽, 𝛾, 𝛿). In general there are no simple closed form formulae for the probability densities, 𝑓, and 
cumulative distribution functions, 𝐹, applicable to these distributional forms (exceptions are the 
normal, Cauchy and Levy distributions), but there are now reliable computer algorithms for working 
with them. 
 
 

2. Parameterisation of stable distributions 
[StableDistributions2] 
 
2.1 As noted in Section 1 any specific stable distributional form is characterised by four 
parameters (𝛼, 𝛽, 𝛾, 𝛿). Nolan (2005) notes that there are multiple definitions used in the literature 
regarding what these parameters mean. He focuses there on two, which he denotes by 
𝐒(𝛼, 𝛽, 𝛾, 𝛿0; 0) and 𝐒(𝛼, 𝛽, 𝛾, 𝛿1; 1), that are differentiated according to the meaning given to 𝛿. The 
first is the one that he concentrates on, because it has better numerical behaviour and intuitive 
meaning, but the second is more commonly used in the literature. We call the former the ‘0-
parameterisation’ and the latter the ‘1-parameterisation’ in these pages. 
 
2.2 In either of these descriptions: 
 

(a) 𝛼 is the index of the distribution, also known as the index of stability or characteristic 
exponent, and must be in the range 0 < 𝛼 ≤ 2. The constant 𝑐𝑛 in the formula in Section 1.3 

must be of the form 𝑛1 𝛼⁄ ; 
 

(b) 𝛽 is the skewness of the distribution and must be in the range −1 ≤ 𝛽 ≤ 1. If 𝛽 = 0 then 
the distribution is symmetric, if 𝛽 > 0 then it is skewed to the right and if 𝛽 < 0 then it is 
skewed to the left; 

 
(c) 𝛾 is a scale parameter and can be any positive number; and 

 
(d) 𝛿 is a location parameter, shifting the distribution right if 𝛿 < 0 and left if 𝛿 > 0. 
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2.3In either description, the distributional form is normally defined via the distribution’s 

characteristic function, i.e. the (complex) function 𝜑(𝑢) = E(𝑒𝑖𝑢𝑋), where E(. ) is the expectation 

operator. Nolan (2005) uses the following definitions: 
 

(a) A random variable 𝑋 is 𝐒(𝛼, 𝛽, 𝛾, 𝛿0; 0) if it has characteristic function 
 

𝜑(𝑢) =

{
 
 

 
 −exp(−𝛾𝛼|𝑢|𝛼 (1 + 𝑖𝛽 (tan

𝜋𝛼

2
) (sign 𝑢)(|𝛾𝑢|1−𝛼 − 1)) + 𝑖𝛿0𝑢) , 𝛼 ≠ 1

exp (−𝛾|𝑢| (1 + 𝑖𝛽
2

𝜋
(sign 𝑢) log(𝛾|𝑢|)) + 𝑖𝛿0𝑢) , 𝛼 = 1

 

 
(b) A random variable 𝑋 is 𝐒(𝛼, 𝛽, 𝛾, 𝛿1; 1) if it has characteristic function 

 

𝜑(𝑢) =

{
 
 

 
 −exp (−𝛾𝛼|𝑢|𝛼 (1 − 𝑖𝛽 (tan

𝜋𝛼

2
) (sign 𝑢)) + 𝑖𝛿1𝑢) , 𝛼 ≠ 1

exp (−𝛾|𝑢| (1 + 𝑖𝛽
2

𝜋
(sign 𝑢) log(|𝑢|)) + 𝑖𝛿1𝑢) , 𝛼 = 1

 

 
2.4 The location parameters are related by: 
 

𝛿0 = {
𝛿1 + 𝛽𝛾 tan

𝜋𝛼

2
, 𝛼 ≠ 1

𝛿1 + 𝛽
2

𝜋
𝛾 log(𝛾) , 𝛼 = 1

 

 
or 
 

𝛿1 = {
𝛿0 − 𝛽𝛾 tan

𝜋𝛼

2
, 𝛼 ≠ 1

𝛿0 − 𝛽
2

𝜋
𝛾 log(𝛾) , 𝛼 = 1

 

 
2.5 Nolan (2005) notes that if 𝛽 = 0 then the 0-parameterisation and the 1-parameterisation 

coincide. When 𝛼 ≠ 1 and 𝛽 ≠ 0 then the parameterisations differ by a shift 𝛽𝛾 tan
𝜋𝛼

2
 which gets 

infinitely large as 𝛼 → 1. Nolan argues that the 0-parameterisation is a better approach because it is 
jointly continuous in all four parameters, but accepts that the 1-parameterisation is simpler 
algebraically, so is unlikely to disappear from the literature. 
 
 

3. Other features 
[StableDistributions3] 
 
3.1 Three special cases of stable laws, which have closed form expressions for their probability 
densities are: 
 

(a) Normal (i.e. Gaussian). 𝑋~𝑁(𝜇, 𝜎2) = 𝐒(2,0, 𝜎 √2⁄ , 𝜇; 0) = 𝐒(2,0, 𝜎 √2⁄ , 𝜇; 1) if 𝑋 has 

density 
 

http://www.nematrian.com/References.aspx?Ref=Nolan2005
http://www.nematrian.com/StableDistributions3.aspx


𝑓(𝑥) =
1

√2𝜋𝜎
exp(−

(𝑥 − 𝜇)2

2𝜎2
)      − ∞ < 𝑥 < ∞ 

 
(b) Cauchy. 𝑋~𝐶𝑎𝑢𝑐ℎ𝑦(𝛾, 𝛿) = 𝐒(1,0, 𝛾, 𝛿; 0) = 𝐒(1,0, 𝛾, 𝛿; 1) if 𝑋 has density 

 

𝑓(𝑥) =
1

𝜋

𝛾

(𝛾2 + (𝑥 − 𝛿)2)
      − ∞ < 𝑥 < ∞ 

 
(c) Levy. 𝑋~𝐿𝑒𝑣𝑦(𝛾, 𝛿) = 𝐒(1 2⁄ , 1, 𝛾, 𝛾 + 𝛿; 0) = 𝐒(1 2⁄ , 1, 𝛾, 𝛿; 1) if 𝑋 has density 

 

𝑓(𝑥) = √
𝛾

2𝜋

1

(𝑥 − 𝛿)3 2⁄
exp (−

𝛾

2(𝑥 − 𝛿)
)      − ∞ < 𝑥 < ∞ 

 
3.2 Generic features of stable distributions noted by Nolan (2005) include: 
 

(a) They are unimodal 
 

(b) When 𝛼 is small then the skewness parameter is significant, but when 𝛼 is close to 2 then it 
matters less and less. 

 
(c) When 𝛼 = 2 (i.e. the Normal distribution), the distribution has ‘light’ tails and all moments 

exist. In all other cases (i.e. 0 < 𝛼 < 2), stable distributions have heavy tails and an 
asymptotic power law (i.e. Pareto) decay. The term stable Paretian is thus used to 
distinguish the 𝛼 < 2 case from the Normal case. A consequence of these heavy tails is that 
not all population moments exist. If 𝛼 < 2 then the population variance does not exist, and 
if 𝛼 ≤ 1 then the population mean does not exist either. Fractional moments, e.g. the 𝑝’th 
absolute moment, defined as 𝐸(|𝑋|𝑝), exist if and only if 𝑝 < 𝛼 (if 𝛼 < 2). Of course all 
sample moments exist, if there are sufficient observations in the sample, but these may 
exhibit unstable behaviour as the sample size increases if the corresponding population 
moment does not exist. 

 
3.3 Linear combinations of independent stable distributions with the same index, 𝛼, are stable. 

If 𝑋𝑗~𝐒(𝛼, 𝛽𝑗, 𝛾𝑗 , 𝛿𝑗; 𝑘) for 𝑗 = 1,… , 𝑛 then 

 

∑𝑎𝑗𝑋𝑗

𝑛

𝑗=1

~𝐒(𝛼, 𝛽, 𝛾, 𝛿; 𝑘) 

 
where: 
 

𝛾𝛼 =∑|𝑎𝑗𝛾𝑗|
𝛼

𝑛

𝑗=1

 

𝛽 =
∑ 𝛽𝑗(sign 𝑎𝑗)|𝑎𝑗𝛾𝑗|

𝛼𝑛
𝑗=1

𝛾𝛼
 

𝛿 =

{
  
 

  
 ∑ 𝛿𝑗

𝑛

𝑗=1
+ 𝛾𝛽 tan

𝜋𝛼

2
            𝑘 = 0, 𝛼 ≠ 1

∑ 𝛿𝑗
𝑛

𝑗=1
+ 𝛽

2

𝜋
𝛾 log 𝛾            𝑘 = 0, 𝛼 = 1

∑ 𝛿𝑗
𝑛

𝑗=1
                                    𝑘 = 1             
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In this generalisation of the definition of stable distributions given in Section 1.3 it is essential for the 
𝛼’s to be the same. Adding stable random variables with different 𝛼’s does not result in a stable law. 
 
 

4. The Generalised Central Limit Theorem 
[StableDistributions4] 
 
4.1 The two main reasons why stable laws are commonly proposed for modelling return series 
are: 
 

(a) The Generalised Central Limit Theorem. This states that the only possible non-trivial limit of 
normalised sums of independent identically distributed terms is stable; and 

 
(b) Empirical. Many large data sets exhibit fat tails (and skewness), and stable distributions form 

a convenient family of distributions that can cater for such features (with choice of 𝛼 and 𝛽 
allowing different levels of fat-tailed-ness or skewness to be accommodated).  

 
We focus below on the former, since there are other families of distributions that can be 
parameterised in ways that can fit different levels of fat-tailed-ness or skewness, including ones 
simpler to handle analytically such as ones with quantile-quantile plots versus the Normal 
distribution that are polynomials rather than straight lines, see e.g. Kemp (2009). 
 
4.2 The classical Central Limit Theorem states that the normalised sum of independent, 
identically distributed random variables converges to a Normal distribution. The Generalised Central 
Limit Theorem shows that if the finite variance assumption is dropped then the only possible 
resulting limiting distribution is a stable one as defined above. Let 𝑋1, 𝑋2, … be a sequence of 
independent, identically distributed random variables. Then there exist constants 𝑎𝑛 > 0 and 𝑏𝑛 and 
a non-degenerate random variable 𝑍 with 
 

𝑎𝑛(𝑋1 +⋯+ 𝑋𝑛) − 𝑏𝑛
∆
→ 𝑍 

 

if and only if 𝑍 is stable (here 
∆
→ means tends as 𝑛 → ∞ to the given distributional form). 

 
4.3 A random variable 𝑋 is said to be in the domain of attraction of 𝑍 if there exist constants 
𝑎𝑛 > 0 and 𝑏𝑛 such that the equation in Section 4.2 holds when 𝑋1, 𝑋2, … are independent 
identically distributed copies of 𝑋. The Generalised Central Limit Theorem thus shows that the only 
possible distributions with a domain of attraction are stable distributions as described above. 
Distributions within a given domain of attraction are characterised in terms of tail probabilities. If 𝑋 
is a random variable with 𝑥𝛼𝑃(𝑋 > 𝑥) → 𝑐+ ≥ 0 and 𝑥𝛼𝑃(𝑋 < 𝑥) → 𝑐− ≥ 0 with 𝑐+ + 𝑐− > 0 for 
some 0 < 𝛼 < 2 as 𝑥 → ∞ then 𝑋 is in the domain of attraction of an 𝛼-stable law. 𝑎𝑛 must then be 

of the form 𝑎𝑛 = 𝑎𝑛
−1 𝛼⁄ . 

 
 

Nomenclature 
[StableDistributionsNomenclature] 
 
𝛼 = index parameter 
𝛽 = skewness parameter 
𝛾 = scale parameter 
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𝛿 = location parameter 
𝛿0 = location parameter if distributional family is parameterised as per the ‘0-parameterisation’ 
𝛿1 = location parameter if distributional family is parameterised as per the ‘1-parameterisation’ 
E(. ) = expectation operator 
𝐒(𝛼, 𝛽, 𝛾, 𝛿0; 0) = stable distributional form if parameterised as per the ‘0-parameterisation’ 
𝐒(𝛼, 𝛽, 𝛾, 𝛿1; 1) = stable distributional form if parameterised as per the ‘1-parameterisation’ 
≜ = equality in distributional form 
∆
→ = tends to the given distributional form 
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