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A (𝑛’th order) polynomial is a function of the form 𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 where the 𝑎𝑖  are 
constant. They appear in many guises in mathematics. Whilst it is common to focus on cases where 
𝑥 is a real number, there are attractions in extending their domain to relate to complex numbers, 
with the 𝑎𝑖  also then being allowed to be complex. For example, a polynomial of order 𝑛 always then 
has 𝑛 (possibly not distinct) roots, i.e. values of 𝑥 where 𝑦(𝑥) = 0 but even if all the 𝑎𝑖  are real some 
of these roots may be complex. 
 
Several special types of polynomial have been widely analysed, including: 
 

- Legendre polynomials 
- Chebshev polynomials 
- Hermite polynomials 
- Jacobi polynomials 
- Laguerre polynomials 

 
These polynomials all appear in a natural way when we try to approximate a functional form as 
follows. 
 
Suppose we define a space of real or complex valued (continuous) functions on the interval [𝑎, 𝑏]. A 
natural ‘scalar product’ of two functions 𝑥(𝑡) and 𝑦(𝑡) is then: 
 

𝑆(𝑥, 𝑦) = ∫ 𝜑(𝑡)𝑥(𝑡)𝑦̅(𝑡)𝑑𝑡

𝑏

𝑎

 

 
where 𝑦̅(𝑡) is the complex conjugate of 𝑦(𝑡) and 𝜑(𝑡) is a real continuous non-negative function 
(with at most finitely many zeros) called the weight function for the given scalar product. If the 𝑥(𝑡) 
and 𝑦(𝑡) are limited to real functions then the definition simplifies to the folloing (because the same 
formulae apply, but the complex  
 
We may then, for example, define ‖𝑓‖ =  𝑆(𝑓, 𝑓). If ‖𝑓 − 𝑔‖ = 0 then 𝑓 and 𝑔 are then identical (if 
continuous) within the interval [𝑎, 𝑏]. We also have ‖𝑓‖ ≥ 0 for all 𝑓, so we can view 𝑓 as a good 
approximation to 𝑔 if ‖𝑓 − 𝑔‖ is close to zero. Different weight functions then indicate where within 
the interval [𝑎, 𝑏] we most want the approximation to be accurate. 
 
As with any vector space, we can define a basis of orthogonal elements, 𝑓0, 𝑓1, … (which is here 
infinite dimensional) which in aggregate ‘span’ the entire vector space, i.e. here the entire range of 

(continuous) functions defined on [𝑎, 𝑏]. By orthogonal we mean 𝑆(𝑓𝑖, 𝑓𝑗) = 0 for 𝑖 ≠ 𝑗. The 

different special functions listed above provide natural orthogonal bases for different weight 
functions: 
 
Legendre: 𝜑(𝑡) = 1 and [𝑎, 𝑏] = [−1,1] (can also be viewed as a special case of Jacobi with 𝛼 =
𝛽 = 0) 
 

Jacobi: 𝜑(𝑡) = (1 − 𝑡)𝛼(1 + 𝑡)𝛽 and [𝑎, 𝑏] = [−1,1] 
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Chebyshev: the special case of the Jacobi with 𝛼 = 𝛽 = − 1 2⁄  which means that they can be 
expressed in a simple analytical manner. 
 
Laguerre: 𝜑(𝑡) = 𝑒−𝑡 and [𝑎, 𝑏] = [0, ∞] 
 

Hermite: 𝜑(𝑡) = 𝑒−𝑡2
 and [𝑎, 𝑏] = [−∞, ∞] 

 

For example, the first few Legendre polynomials are 𝑃0(𝑡) = 0, 𝑃1(𝑡) = 𝑡, 𝑃2(𝑡) =
1

2
(3𝑡2 − 1), 

𝑃3(𝑡) =
1

2
(5𝑡3 − 3𝑡), … 

 
The exact definition of each special polynomial type depends on the ‘normalisation’ used. This is 

because if 𝑆(𝑓𝑖, 𝑓𝑗) = 0 then 𝑆(𝑘𝑓𝑖, 𝑓𝑗) = 0 for any 𝑘. The usual normalisation convention involves 

‖𝑓𝑖‖ = 1 for all 𝑖. 
 
In the financial world, the computation of many types of risk measures is mathematically akin to a 
evaluating a particular integral. A common way of carrying out numerical integration is to use an 
approach called Gaussian quadrature. This is often implemented in a fashion that makes use of some 
of the polynomials described above.  
 


