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Abstract 
 
The aim of the pages set out below is to summarise an approach to derivative pricing that involves 
approximating the payout function of the derivative by a sum of a set of domain-limited functions 
(i.e. functions that only take non-zero values for some specific range of inputs). The functions are 
chosen so that the price of each element of the overall payout function can be calculated 
analytically. The overall price of the derivative can then be calculated in a quasi-analytic manner, 
merely by adding together the value contributions arising from each individual function. This can 
considerably speed up calculation times and can reduce the numerical noise otherwise often 
introduced into hedging parameter computations. 
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1. Introduction 
[SemiAnalyticLatticeIntegratorApproaches1] 
 
1.1 The price of a (European-style) derivative can be calculated as the discounted expected 
value of its payout function, where the expectation is carried out using the risk-neutral probability 
distribution. If the payout function and the risk-neutral probability distribution are both simple 
functions then the price of the derivative may be derivable analytically. For example, the Black-
Scholes formulae can be derived analytically (see e.g. Black-Scholes derivation as the limit of a 
binomial tree or Black-Scholes derivation using stochastic calculus). The hedging parameters, i.e. 
greeks, applicable to the derivative may also be analytically tractable (see e.g. hedging parameters 
applicable to vanilla and binary puts and calls in a Black-Scholes world). However, for more 
complicated pay-offs or more complicated risk neutral probability distributions it is usually not 
possible to derive equivalent analytical formulae. 
 
1.2 The most common approach used to circumvent this problem is to use numerical 
approaches such as binomial or trinomial trees that converge to the correct price or other hedging 
parameter as the tree becomes more and more finely grained. Unfortunately, these algorithms are 
not usually very good at handling singularities in derivative payout functions. These singularities can 
arise directly in the payout function, e.g. payout functions applicable to digital options have 
discontinuities at the strike price. They can also arise via discontinuous first partial derivatives with 
respect to the underlying (price) process. These are more common. For example, the first derivative 
of the payout function of a vanilla call option is discontinuous at the strike price because the payoff 
function has a kink there. 
 
1.3 Some of the problems these discontinuities create can be mitigated by judicious choice of 
where to position the nodes of the relevant tree. However, an arguably better approach, if it is 
practical to implement, is to approximate the payoff function as the sum of components that are 
analytically tractable. In particular, it is often possible to find payoff functions with specified domain 
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limits (i.e. ranges over which they are non-zero) that are analytically tractable. This leads to the 
semi-analytic lattice integrator (‘SALI’) approach, see e.g.  Hu, Kerkhof, McCloud and Wackertapp 
(2006. 
 
1.4 As with other derivative pricing approaches, the SALI approach notes that the value, 𝑉𝑡, of a 
(non-dividend paying) derivative at time 𝑡, relative to the chosen numeraire asset, 𝑁𝑡, satisfies: 
 

𝑁𝑡
−1𝑉𝑡 = 𝐄𝑁(𝑁𝑇

−1𝑉𝑇|𝐼𝑡) 

 
where 𝐼𝑡 is the information set (or filtration) generated by the underlying processes and 𝐄𝑁 is the 
relevant risk-neutral expectation operator. Usually, we will restrict ourselves to Markovian models, in 
which case the above formula can also be written as: 
 

𝑁𝑡
−1𝑉𝑡 = 𝐄𝑁(𝑁𝑇

−1𝑉𝑇|𝑧𝑡) 

 
 
1.5 The observation underlying SALI is that if the payout can be written as a function of the 
underlying Markov process then it can be decomposed into the sum of a finite number of smooth 
subcomponents i.e. as: 
 

𝑁𝑡
−1𝑉𝑡 = ∑ 𝐄𝑁 (𝑎𝑖(𝑧𝑇) ∏ 𝐈𝑏𝑖𝑗(𝑧𝑡)𝑗 |𝑧𝑡)

𝑖

 

 
where 𝑧𝑡 denotes a (typically) low-dimensional underlying Markov process. 
 
Here the 𝐈 are indicator functions, i.e. 𝐈𝑏𝑖𝑗(𝑧𝑡) = 1 if 𝑏𝑖𝑗(𝑧𝑡) ≥ 0, = 0 otherwise. The decomposition 

might use one smooth function between consecutive discontinuities, or it might use several that are 
pasted together, e.g. cublic spline functions. 
 
1.6 The pricing problem can thus be re-expressed as: 
 

𝑁𝑡
−1𝑉𝑡 = ∑ ∫ 𝑎𝑖(𝑧𝑇)𝑝(𝑧𝑇|𝑧𝑡)𝑑𝑧𝑡

𝐷𝑖𝑖

 

 

where 𝐷𝑖 =  {𝑧𝑇: 𝑏𝑖𝑗(𝑧𝑇) ≥ 0 ∀𝑗} = ⋂ 𝐷𝑖𝑗𝑗  where 𝐷𝑖𝑗 = {𝑧𝑇: 𝑏𝑖𝑗(𝑧𝑇) ≥ 0}. 𝐷𝑖 can in practice be 

truncated to be within some ‘envelope of support’ that includes essentially all of the probability 
density applicable to the pricing problem. For example, for a Weiner process, one might use an outer 
envelope spreading out to, say, four standard deviations, since virtually none of the probability density 
is outside this spread. However, care is needed in such a truncation if the payoff function becomes 
sufficiently large sufficiently rapidly at the edge of the distribution, see e.g. the Cost of Capital pricing 
model. 
 
 

2. Carrying out the required integrations 
[SemiAnalyticLatticeIntegratorApproaches2] 
 
2.1 There are several possible choices for the ‘basis’ function elements of SALI, i.e. the 𝑎𝑖(𝑧𝑇). If 
we are focusing on a single factor model, then 𝑧𝑇 is a scalar function rather than a vector function. 
Natural choices of basis functions are then: 
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(a) Low-order piece-wise smooth polynomials, such as cubic splines. Only a few node points are 
usually necessary to obtain a pretty accurate representation of a smooth function. Hu, 
Kerkhof, McCloud and Wackertapp (2006) focus on this approach. 

 
(b) Higher order polynomial curve fits. There are many different ways of approximating 

arbitrarily accurately a function over a given range by using a polynomial series expansion, 
typically formulated using orthogonal polynomials, e.g. Legendre polynomials. 

 
(c) Curve fits using other function series that can arbitrarily accurately approximate a function 

over a given range, where the functions in question are more easily or more accurately 
capable of being integrated against the probability density in question or can more succinctly 
match the payoff function in question. 

 
2.2 One reason why (c) may be better than (b) can be seen by considering how SALI might be 
applied to the special case of European-style vanilla call and put options in a Black-Scholes world (for 
which there are already analytic formulae, see hedging parameters applicable to vanilla and binary 
puts and calls in a Black-Scholes world). The underlying process (for a non-dividend bearing 
underlying) in this case involves: 
 

𝑆𝑇 = 𝐹𝑇𝑒−𝜎√𝑇𝑧−
1
2

𝜎2𝑇 
 
where 𝑧~𝑁(0,1). 
 
Thus the natural curve fit to use in this instance is an exponential, since we then recover exactly the 
Black-Scholes formulae, see e.g. Black-Scholes derivation using stochastic calculus. This corresponds 
to polynomial curve fitting of log 𝑆 rather than 𝑆 itself. 
 
2.3 Various analytical results that can be used in this context when the payoff function is 
approximated using basis elements that are either polynomials or exponentials of polynomials (if the 
underlying follows a Weiner process or some straightforward variants) are described in integration of 
piece-wise polynomials against a Gaussian PDF. 
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