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The risks expressed by a portfolio of assets or liabilities depend heavily on how these assets and 
liabilities might ‘co-move’, i.e. move in tandem. One way of analysing these co-movement 
characteristics is to consider the covariances between the price movements of (or more precisely, 
the log returns on) different assets and liabilities. 
 
Most usually, investigators encapsulate this information within a single structure, the covariance 
matrix, often estimating this matrix empirically, using past observed covariances between the 
different assets and liabilities. 
 
But how do we tell how ‘reliable’ is this estimation process? Suppose we have 𝑇 time periods that 
we can use to estimate empirically the characteristics of the covariance matrix and 𝑁 assets or 
liabilities (i.e. ‘instruments’). The correlation matrix contains 𝑁(𝑁 − 1) 2⁄  distinct entries. If 𝑁 is 
large relative to 𝑇 (which it usually is in the risk management context) then we should expect the 
empirical determination of the covariance matrix to be ‘noisy’, i.e. for it to have a material element 
of randomness derived from measurement ‘noise’. It should therefore be used with caution. Such 
matrices can be characterised by their eigenvectors and eigenvalues, and it is the smallest (and 
hence apparently least relevant) of these that are most sensitive to this noise. But these are 
precisely the ones that determine, in Markowitz theory, the precise structure of optimal portfolios, 
see Laloux et al. (1999). 
 
It is thus desirable to devise ways of distinguishing between ‘signal’ and ‘noise’, i.e. to distinguish 
between those eigenvalues and eigenvectors of the covariance matrix that appear to correspond to 
real characteristics exhibited by these assets and liabilities and those that are mere artefacts of this 
noise. 
 
One way of doing this is to use random matrix theory. This theory has a long history in physics since 
Eugene Wigner and Freeman Dyson in the 1950s. It aims to characterise the statistical properties of 
the eigenvalues and eigenvectors of a given statistical ‘ensemble’ (i.e. the set of random matrices 
exhibiting pre-chosen symmetries or other sorts of constraints). Amongst other things, we might be 
interested in the average density of eigenvalues and in the distribution of spacing between 
consecutively ordered eigenvalues etc.  
 
For example, we might compare the properties of an empirical covariance matrix 𝑉 with a ‘null 
hypothesis’ that the assets were, in fact, uncorrelated. Deviations from this null hypothesis that 
were sufficiently unlikely might then suggest the presence of true information. 
 
In the limit of very large matrices (i.e. 𝑁 → ∞) this density is analytically tractable and is as follows, 
for covariance matrices derived from (independent) series that have a common standard deviation, 
𝜎. Correlation matrices derived from the above null hypothesis have this property, as they 
correspond to covariance matrices where each series has a standard deviation in isolation of 𝜎 = 1. 
 
The density, for a given 𝑄 = 𝑇 𝑁⁄ , is 𝑓𝑄,𝜎(𝜆) where: 

 

𝑓𝑄,𝜎(𝜆) = {
𝑄

2𝜋𝜎2

√(𝜆𝑚𝑎𝑥 − 𝜆)(𝜆 − 𝜆𝑚𝑖𝑛)

𝜆
  if  𝜆𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆𝑚𝑎𝑥

0  otherwise

 

http://www.nematrian.com/RandomMatrixTheory.aspx
http://www.nematrian.com/References.aspx?Ref=LalouxEtAl1999


where  𝜆𝑚𝑎𝑥 = 𝜎2 (1 +
1

𝑄
+ 2√

1

𝑄
)   and  𝜆𝑚𝑖𝑛 = 𝜎2 (1 +

1

𝑄
− 2√

1

𝑄
) 

 
In the limiting case where 𝑁 is large this has some features that get smoothed out in practice for less 
extreme values of 𝑁, in particular the existence of a hard upper and (if 𝑄 < 1) lower limit above and 
below which the density falls to zero. 
 
We may therefore adopt the following prescription for ‘denoising’ an empirically observed 
correlation matrix, if we can assume that the ‘null’ hypothesis is that the instruments are 
independent (an assumption that would be inappropriate if, say, we should ‘expect’ two instruments 
to be correlated, e.g. the two might be listings of the same underlying asset on two different stock 
exchanges, or two bonds of similar terms issued by the same issuer), see Scherer (2007): 
 

(a) Work out the empirically observed correlation matrix (which by construction has 
standardised the return series so that 𝜎 = 1). 

 
(b) Identify the largest eigenvalue and corresponding eigenvector of this matrix. 

 
(c) If the eigenvalue is sufficiently large, e.g. materially larger than the cut-off derived from the 

above (or some more accurate determination of the null hypothesis density applicable to 
the finite 𝑁 case), then deem the eigenvalue to represent true information rather than noise 
and move on to step (d), otherwise stop. 

 
(d) Record the eigenvalue and corresponding eigenvector. Determine the contribution to each 

instrument’s return series from this eigenvector. Strip out these contributions from each 
individual instrument return series, calculate a new correlation matrix for these adjusted 
return series and loop back to (b). 

 
The reason we in theory need to adjust each instrument return series in step (d) is that otherwise 
the ‘residual’ return series can no longer be assumed to have a common 𝜎, so we can no longer 
directly use a formula akin to that above to identify further eigenvectors that appear to encapsulate 
true information rather than noise. However, if we ignore this nicety (i.e. we adopt the null 
hypothesis that all residual return series, after stripping out ‘significant eigenvectors’ are 
independent identically distributed Gaussian random series with equal standard deviations) then the 
computation of the cut-offs simplifies materially. This is because: 
 

i. The trace of a symmetric matrix (i.e. the sum of the leading diagonal elements) is the same 
as the sum of its eigenvectors (and is therefore invariant relative to a change in basis for the 
relevant vector space). 
 

ii. So, removing the leading eigenvector as above merely involves removing the leading row 
and column, if the basis used involves the eigenvectors. 
 

iii. The variance of the residual series under this null hypothesis is therefore merely the sum of 
the eigenvalues not yet eliminated iteratively. 
 

iv. Hence, we can calculate the cutoff 𝜆𝑚𝑎𝑥(𝑖) for the 𝑖’th eigenvalue (1 < 𝑖 < 𝑁) as follows, 
where 𝑒𝑗 is the magnitude of the 𝑗’th eigenvalue (1 < 𝑗 < 𝑁): 

 
 

http://www.nematrian.com/References.aspx?Ref=Scherer2007


𝜆𝑚𝑎𝑥(𝑖) = (
1

𝑁
∑ 𝑒𝑗

𝑁

𝑗=𝑖

) (1 +
𝑁 − (𝑖 − 1)

𝑇
+ 2√

𝑁 − (𝑖 − 1)

𝑇
) 

 
Using this prescription, we would exclude any eigenvalues and corresponding eigenvectors beyond 
the first one for which the eigenvalue is not noticeably above this cutoff. The Nematrian website 
function MnEigenvalueSpreadsForRandomMatrices calculates these 𝜆𝑚𝑎𝑥(𝑖). More precise tests of 
significance could be identified by simulating spreads of results for random matrices. 
 
Edelman and Rao (2005) describe how in many cases it is possible to calculate eigenvalue densities 
for a wide range of transformations of random matrices, including both deterministic and stochastic 
transformations. They express the view that the usefulness of random matrix theory will through 
time follow that of numerical analysis more generally, i.e. most disciplines in science and engineering 
will in due course find random matrix theory a valuable tool. Its history started in the physics of 
heavy atoms and multivariate statistics. It has already found its way into wireless communications 
and combinatorial mathematics and as seen above is potentially also becoming increasingly used in 
the field of financial analysis and risk management. 
 
 

Relevant Nematrian Web service tools 
[RandomMatrixTheoryTools] 
 
The function MnEigenvalueSpreadsForRandomMatrices returns an array containing the 𝜆𝑚𝑎𝑥(𝑖) for 
the limiting case where 𝑁 is large. It takes as inputs the eigenvalues 𝑒𝑖 and a value for 𝑇 (which is not 
necessarily integral, to cater for the possibility that the effective number of observations is less than 
the actual number, e.g. if observations for different time periods are given different weights). 
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