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One approach for fitting the tail of a distribution is to select an appropriate distributional family and 
then to select the parameters characterising the distribution in a manner that provides the best fit of 
the observed (cumulative) distribution function and/or quantile-quantile plot in the relevant tail. 
 
Suppose that the observations are 𝑥𝑖 for 𝑖 = 1, … , 𝑛. When ordered these are say 𝑥(𝑖). Weights given 

to each observation in the curve fitting process are 𝑤(𝑖). Typically we might expect the 𝑤(𝑖) to be non-

zero (and then typically constant) only for 𝑖 sufficiently small, or for 𝑖 sufficiently large, although this 
is not strictly necessary. 
 
A common way of carrying out curve fitting is least squares, so a natural way of implementing this 
approach to fit a (univariate) Normal distribution to the data might be: 
 
Any Normal distribution is characterised by a mean, 𝜇, and standard deviation, 𝜎. We might therefore 
derive, 𝑦(𝑖), the expected value for the observation 𝑥(𝑖),  using the following formula: 

 
𝑦(𝑖) = 𝜇 + 𝜎𝑞(𝑖)  where 𝑞(𝑖) = 𝑁−1(𝑖 − 1 2⁄ ) 

 
[Note, the expected value of 𝑗’th quantile of a Normal distribution is not precisely 𝑞𝑗 as defined above 

because the pdf is not flat, see e.g. Expected Worst Loss Analysis] 
 
We would then identify estimates of the mean, 𝜇̂, and standard deviation, 𝜎̂, that together minimise 
the following least squares computation: 
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This is minimised when 
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= 0 and 
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= 0, i.e. for the values of 𝜇̂ and 𝜎̂ where: 
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If 𝑊 = ∑ 𝑤(𝑖), 𝑊𝑞 = ∑ 𝑤(𝑖)𝑞(𝑖), 𝑊𝑞𝑞 = ∑ 𝑤(𝑖)𝑞(𝑖) 𝑞(𝑖), 𝑊𝑥 = ∑ 𝑤(𝑖)𝑥(𝑖) and 𝑊𝑞𝑥 = ∑ 𝑤(𝑖)𝑞(𝑖)𝑥(𝑖) then 

these equations simplify to: 
 

𝑊𝜇̂ + 𝑊𝑞𝜎̂ = 𝑊𝑥   and  𝑊𝑞𝜇̂ + 𝑊𝑞𝑞𝜎̂ = 𝑊𝑞𝑥 

∴ 𝜇̂𝑇𝐹 =
𝑊𝑞𝑞𝑊𝑥 − 𝑊𝑞𝑊𝑞𝑥

𝑊𝑊𝑞𝑞 − 𝑊𝑞
2   and  𝜎̂𝑇𝐹 =

−𝑊𝑞𝑊𝑥 + 𝑊𝑊𝑞𝑥

𝑊𝑊𝑞𝑞 − 𝑊𝑞
2  

 
Whilst this type of approach is primarily designed to be used merely in the tail of the distribution (i.e. 
with 𝑤(𝑖) non-zero, perhaps constant, only for 𝑖 suitably small or, for the other tail, only for 𝑖 suitably 

close to 𝑛), we can also consider what answer this approach would give if it were applied to the entire 
distributional form, e.g. using 𝑤(𝑖) = 1 for all 𝑖 = 1, … , 𝑛. As the 𝑞(𝑖) are symmetric around 0.5, we 

have 𝑊𝑞 = 0 so 𝜇̂ = 𝑊𝑥 𝑊⁄ , i.e. 𝜇̂ is then the usual maximum likelihood estimator 𝑥̅. By, say, carrying 
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out a simulation exercise we can also confirm that 𝜎̂ is also typically close to the relevant maximum 
likelihood estimator if 𝑛 is not very small. 
 


