Marginal Value-at-Risk (Marginal VaR) when underlying distribution is
multivariate normal
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Suppose we have a set of n risk factors which we can characterise by an n-dimensional vector x =
(x4, ..., x,)T. Suppose that the (active) exposures we have to these factors are characterised by
another n-dimensional vector, a = (ay, ..., a,)”. Then the aggregate exposure is a.X.

The Tail Value-at-Risk, VaR,(a), of the portfolio of exposures a at confidence level a, is defined as
the value such that Pr(a.x < —VaR,(a)) = 1 — a. The Marginal Value-at-Risk, MVaR, ;(a), is the
sensitivity of VaR, (a) to a small change in i’th exposure, i.e.:
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In the case where the risk factors are multivariate normally distributed with mean p = (uq, ..., ttn)"
and covariance matrix V whose elements are V;; we have the following.

As x~N(u,V) we have a.x~N(a.p,a’Va) = VaR,(a) = —(a. n+oN-1(1- a)) where ¢ =
vaTVa is the standard deviation of the volatility of the (active) portfolio return, otherwise known if
we are focusing on active exposures as the (ex-ante) tracking error.
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The last part of this equation can be expressed in terms of the correlation between x; and a.x as
follows. Suppose we view the x; as corresponding to time series x; ; with T elements (which without
loss of generality can be assumed to be de-meaned, i.e. to have their means set to zero) and a.x as
corresponding to a time series y, = Y1_; a;x; ¢. Then the correlation between x; and a.x would be
(ignoring any small sample adjustment):
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We would also have:
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As risks arising from individual positions interact there is no universally agreed way of subdividing
the overall risk into contributions from individual positions. However, a commonly used way is to
define the Contribution to Value-at-Risk, c;, of the i’th position, a; to be as follows:

C; = al-MVaRa,l- (a)

Conveniently the ¢; then sum to the overall VaR:
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The property that the contributions to risk add to the total risk is a generic feature of any risk
measure that is (first-order) homogeneous, a property that Value-at-Risk exhibits.



