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The Lanczos approximation is a method for computing the gamma function numerically, originally 
derived by Cornelius Lanczos in 1964 and involving the following formula: 
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Here 𝑔 is an arbitrary constant subject to the restriction that 𝑅𝑒(𝑧 + 𝑔 + 1 2⁄ ) > 0 and 𝐿𝑔(𝑧) and 

𝑝𝑖(𝑔) are as follows, where 𝐶(𝑖, 𝑗) is the (𝑖, 𝑗)’th element of the Chebyshev polynomial coefficient 
matrix: 
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The series 𝐿𝑔 converges. By choosing an appropriate 𝑔, typically a small positive number, only a few 

terms are needed to calculate the gamma function to a high degree of accuracy. The series 
approximation can then be recast into the following form, with the 𝑐𝑘 calculated in advance: 
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According to Wikipedia (2015), Lanczos derived the formula by deriving the following integral 
representation for the gamma function and then deriving a series expansion for the integral within 
this representation: 
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