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In a number of financial contexts it can be important to calculate the following integral:
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For example, this integral is relevant to calculating moments of a fat-tailed distribution, i.e. one whose
quantile-quantile plot versus the Normal distribution, F(x), is not unity. The faster |F (x)| increases

as x — too the greater is the impact of fat-tailed behaviour, i.e. deviations from a density function of
(x-w)?

the form f(x) = \/%e_ 202 . Thus risk measures such as expected shortfall (effectively a first

moment computation, in which the leading element of F(x) is of order x = x) are more sensitive to
fat-tailed effects than Value-at-Risk risk measures (effectively a zero moment computation, in which
the leading element of F(x) is of order x°).

This integral can also appear in derivative pricing analysis, if payoff is being approximated by a
piecewise polynomial function and the movement of the underlying is of a certain type (but see
Valuing polynomial payoffs in a Black Scholes World, which suggests that some modification may be
needed to cater for exponentials arising when converting the partial differential equation arising
under a Gauss-Weiner process to one with ‘standard’ parabolic form).

Hence, it becomes helpful to be able to calculate the following integral rapidly:
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If z is large then we note that:
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If z is small then for higher order coefficients the above computation runs into machine rounding
problems. It is then better to use a Taylor series expansion, bearing in mind that:
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Hence (if n is integral and n = 0) we have:
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