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Suppose a risk manager believes that an appropriate model for a particular type of operational risk 
exposure involves the loss, 𝑋 ≥ 0, never exceeding an upper limit, 𝑐 > 0, and the probability density 
function 𝑓(𝑥) taking the form: 
 

𝑓(𝑥) = {
𝑎 if 0 ≤ 𝑥 < 𝑐 2⁄
𝑏 if 𝑐 2⁄ ≤ 𝑥 ≤ 𝑐
0 otherwise

 

 
where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0 are all constant. 
 
Suppose we want to estimate maximum likelihood estimators for 𝑎, 𝑏 and 𝑐 given losses of 
𝑋1, … , 𝑋𝑛, say and hence to estimate a Value-at-Risk for a given confidence level for this loss type, 
assuming that the probability distribution has the form set out above. 
 

We note that ∫ 𝑓(𝑥)𝑑𝑥
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Suppose the 𝑛 losses,  𝑋 = (𝑋1, … , 𝑋𝑛)𝑇, are assumed to be independent draws from a distribution 
with probability density function 𝑓(𝑥) and suppose 𝑛1 of these losses are less 𝑐 2⁄  and 𝑛2 = 𝑛 − 𝑛1 
are greater than 𝑐 2⁄ . The likelihood is then: 
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This will be maximised for some value that has 𝐿(𝑋) > 0, i.e. has 𝑐 at least as large as 
𝑚𝑎𝑥(𝑋1, … , 𝑋𝑛). In such circumstances the likelihood is maximised when the log likelihood is 
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(assuming 𝑎 ≠ 0 and 𝑏 ≠ 0) 
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For these values of 𝑎 and 𝑏 the log likelihood is then: 
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In most circumstances this will be maximised when 𝑐 is as small as possible, as long as 𝑐 is still at 
least as large as 𝑚𝑎𝑥(𝑋1, … , 𝑋𝑛) so the maximum likelihood estimators are: 
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However, it is occasionally necessary to consider the case where we select a 𝑐 > 𝑚𝑎𝑥(𝑋1, … , 𝑋𝑛) to 
that has 𝑎 and/or 𝑏 equal to zero. 
 
To estimate a VaR at a confidence level 𝛼 we need to find the value 𝑌 for which the loss is expected 
to exceed 𝑌 only (1 − 𝛼)% of the time, i.e. 𝑌 such that (if 𝑌 ≥ 𝑐 2⁄ ): 
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