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Suppose a portfolio has 𝑛 equally-sized exposures. Each one is independent and has a probability 𝑝 
of creating a unit loss (and a probability 1 − 𝑝 of creating a zero loss), with 𝑝 the same for each 
exposure, meaning that the portfolio loss, −𝑋, is distributed according to a binomial distribution, 
i.e.: 
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The mean and the variance of the portfolio loss distribution can be found as follows. We note that: 
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The mean of the loss distribution is given by: 
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Likewise: 
 
 

𝐸(𝑋(𝑋 − 1)) = 𝑛(𝑛 − 1)𝑝2 ∑
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= 𝑛(𝑛 − 1)𝑝2 
 
The variance of the loss distribution is: 
 

𝐸 ((𝑋 − 𝐸(𝑋))
2
) = 𝐸((𝑋 − 𝑛𝑝)2) = 𝐸(𝑋2 − 2𝑛𝑝𝑋 + 𝑛2𝑝2) 

= 𝐸(𝑋(𝑋 − 1)) + 𝐸(𝑋) − 2𝑛𝑝𝐸(𝑋) + 𝑛2𝑝2 

= 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝(1 − 2𝑛𝑝 + 𝑛𝑝) = 𝑛𝑝(1 − 𝑝) 
 
Thus binomial distribution has mean 𝑛𝑝 and variance 𝑛𝑝(1 − 𝑝). 
 
As 𝑛 → ∞, the Central Limit Theorem CLT implies that the binomial distribution tends to a normal 

distribution with the same mean and variance, i.e. to 𝑋~𝑁(𝑛𝑝, 𝑛𝑝(1 − 𝑝)) where 𝑁(𝑥) is the 

cumulative normal distribution. 
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