Deriving the Black-Scholes Option Pricing Formulae using Ito (stochastic)
calculus and partial differential equations
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The following partial differential equation is satisfied by the price of any derivative on S, given the
assumptions underlying the Black-Scholes world:
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This partial differential equation is a second-order, linear partial differential equation of the
parabolic type. This type of equation is the same as used by physicists to describe diffusion of heat.
For this reason, Gauss-Weiner or Brownian processes are also often commonly called diffusion
processes.

If r, g and o are constant then we can solve it by transforming it into a standard form which others
have previously solved, namely (for some constant c):
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This can be achieved by replacing u by w where w = ue™™~9 (as long as r is constant) and by
making the following double transformation (assuming that r, g and ¢ are constant):

This transformation removes one of the terms in the partial differential equation:

log(S) r—q—o0?/2 log(S) r—q—0?%/2
L =10gl) T4 /(T_t): g8) r-q=-o7/
o o o o

y=T-—t

The partial differential equation then simplifies to w,, = %Wy, With ¢ = 1/+/2. Prices of different
derivatives all satisfy this equation and are differentiated by the imposition of different boundary
conditions. A common tool for solving partial differential equations subject to such boundary
conditions is the use of Green’s functions. This expresses the solution to a partial differential
equation given a general boundary condition applicable at some boundary B(z), formed say by the
curve x = X(z),y = ¥(2), as an expression of the following form, in which G is called the Green’s
function for that partial differential equation:
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The Green’s function for w,, = c?w,, where c is constant is:
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If the boundary condition is expressed as w(x, 0) = wy(x) at y = 0, where wy(x) is continuous and
bounded for all x, then the solution is:

G(x,y,xy) =
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For a European call option, with strike price K, we have, after making the substitutions described
above, u(S,T) = max(§ — K,0) = wy(x) = max(e?® — K, 0). After some further substitutions we
find that this implies that:
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Substituting k = 0 and k = 1 into the formula for Q(k, K, S, y) recovers the Black-Scholes formulae,
e.g. for a call option:
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and N(z) is the cumulative Normal distribution function, i.e.

N(z) = e **/2dx
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