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1. Introduction 
 
The purpose of this note is to provide a summary of the main mathematical components underlying 
risk measurement. Some of the mathematical ideas explored in this note are illustrated numerically 
in spreadsheets available via the Nematrian website. Readers should bear in mind that risk and 
uncertainty are only partly quantifiable and therefore only partly amenable to mathematical analysis. 
Readers interested in more general material on risk measurement and management may wish to refer 
to the enterprise risk management pages of the Nematrian website, at 
www.nematrian.com/erm.aspx. 
 
This note does not in the main address how we might select between alternative approaches to 
managing risk. A mathematical treatment of this problem generally involves some form of portfolio 
optimisation or related technique. Nor does it seek to cover derivative pricing theory in any great 
depth or to cover how such theory might be implemented in practice, e.g. via Monte Carlo simulation 
techniques. 
 

2. Portfolio risk measures 
 
2.1 Value-at-Risk 
 
Several types of (quantitative) measures of risk are used in the financial industry and increasingly in 
other sectors of the economy. Perhaps the best known is Value-at-Risk or VaR. For a portfolio (of risks, 
investments, …) it is the loss which will be exceeded on some fraction, 𝛼, of occasions if the portfolio 
is held for a given length of time, i.e. for a given time horizon, say 𝑇. 
 
Suppose a portfolio consists of monetary amounts 𝐚 = (𝑎1, … , 𝑎𝑛)

𝑇 invested in 𝑛 exposures. Let 𝑥𝑖 
be the loss (i.e. negative payoff) on the 𝑖’th exposure, and 𝐱 = (𝑥1, … , 𝑥𝑛)

𝑇. Let 𝐿 = 𝐚. 𝐱 = ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1  

be the total portfolio loss. 
 
Definition 2.1: For a portfolio with total losses over a holding period 𝑇 equal to a random variable 𝐿, 
the Value-at-Risk with confidence level 𝛼 (0 < 𝛼 < 1), denoted 𝑉𝑎𝑅𝛼 is defined as: 
 

𝑉𝑎𝑅𝛼 = inf{𝑧: 𝑃𝑟(𝐿 ≥ 𝑧) ≤ 𝛼} 
 
For a continuous distribution 𝑉𝑎𝑅𝛼 is implicitly defined by 
 

𝑃𝑟(𝐿 ≥ 𝑉𝑎𝑅𝛼) = 𝛼 
 
Or, if the probability density function (pdf) of payoff 𝑋 is 𝑝(𝑥) (remember losses are negative payoffs) 
then 𝑉𝑎𝑅𝛼 is defined implicitly as the value 𝑘 such that: 
 

http://www.nematrian.com/erm.aspx
http://www.nematrian.com/ValueAtRisk.aspx
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𝑉𝑎𝑅𝛼(𝑋) = 𝑘    𝑤ℎ𝑒𝑟𝑒 ∫ 𝑝(𝑥)𝑑𝑥

−𝑘

−∞

= 1 − 𝛼 

 
Points to note include: 
 
(a) 𝑉𝑎𝑅𝛼 is mathematically equivalent to the (1 − 𝛼)-quantile of the payoff distribution, or in 

mathematical notation 𝑉𝑎𝑅𝛼(𝑋) = −𝐹
−1(1 − 𝛼) where 𝐹−1(𝑥) is the quantile function, also 

called the inverse cumulative distribution function or just the inverse function of the 
distribution with density 𝑝(𝑥). This indicates that when we are estimating and using 𝑉𝑎𝑅𝛼 we 
may draw on an extensive body of statistical knowledge relating to quantile estimation. 

 
(b) We’ve given above the usual definitions of 𝑉𝑎𝑅𝛼 but sometimes the sign is flipped and/or 𝛼 

is replaced by 1 − 𝛼 (so if someone refers to a 99% VaR and someone else refers to a 1% VaR 
then they may be referring to the same thing as both are likely to be referring to the downside 
tail). 

 
(c) 𝑉𝑎𝑅𝛼 has a natural connection with the amount of capital a firm should hold. Capital is 

(usually) defined as the excess of assets over liabilities and nowadays the tendency is to value 
assets and liabilities in such calculations by reference to economically relevant market values 
rather than, say, book or purchase costs. If a firm holds (market-value) capital equal to 𝑉𝑎𝑅𝛼 
(calculated for a holding period of 𝑇) then it should experience losses exceeding its capital 
with probability 𝛼 (if it does not alter its portfolio or its asset or liability bases in the 
meantime). 

 
(d) Strictly speaking we need some axioms to apply for the mathematics underlying these 

computations to work. In particular, we need to assume that the numerical value we ascribe 
to a loss satisfies uniqueness, additivity and scalability, i.e. here that 𝐿 is well defined (in the 
above we are referring to the value that we place on the loss, typically its monetary value), 
and that if we have two losses 𝑥1 and 𝑥2 then 𝑘(𝑥1 + 𝑥2) = 𝑘𝑥1 + 𝑘𝑥2 

 
(e) In nearly all cases mathematical risk measurement theory concentrates on the market value 

of the exposures or some reasonable economic proxy. This is partly because such values, if 
suitably defined, should adhere to the axioms in (d) if we adopt the principle of no arbitrage. 
A corollary is that a good broad understanding of how to make values placed on exposures 
market consistent is very important for effective (financial) risk measurement and 
management. More specifically, a good broad understanding of option pricing theory is 
generally important if the types of exposures present include material optionality. 

 
(f) We may conceptually split 𝑉𝑎𝑅𝛼 into two parts, the expected loss, 𝐸𝐿 = 𝐸(𝐿), and the 

unexpected loss, 𝑈𝐿 = 𝑉𝑎𝑅𝛼 − 𝐸𝐿. Some commentators argue that, say, banks should only 
hold capital equal to the UL on the grounds that the expected losses on, say, a bank’s loan 
portfolio should be offset by anticipated profit margins included in loan pricing. The potential 
flaw in this logic is that firms do not necessarily estimate EL correctly (or necessarily price the 
loan ‘correctly’ in relation to the EL even if they have estimated EL accurately, e.g. their pricing 
may be driven by market forces). Also, the EL may change through time (as economic 
conditions change) but loan rates may not move in tandem, and some capital is potentially 
required to protect against this risk. 

 
Ways in which financial firms (especially banks) use 𝑉𝑎𝑅𝛼 include: 
 



©Nematrian Limited, 2020  3 

(i) In the context of decisions about appropriate levels of capital. Judging the right amount of 
capital for a firm implicitly involves calculating how much capital might be wiped out with a 
given probability, so is closely allied with 𝑉𝑎𝑅𝛼. 

 
(ii) Working out appropriate measures of remuneration for dealers 
 
(iii) Managing risk 
 
(iv) Conveying information to the market about the riskiness of a firm’s operations 
 
(v) As part of the supervisory process that financial firms are typically nowadays subject to. 
 
2.2 Relative VaR 
 
Although VaR is usually defined by reference to (monetary) losses many types of risk measurement, 
particularly in the investment management sector, actually involve losses relative to some benchmark 
outcome. The ‘loss’ measured by the relevant VaR may then be reexpressed relative to the benchmark 
and the VaR in question may then be referred to as a ‘relative’ VaR if there is a wish to distinguish it 
from an ‘absolute’ VaR that is not benchmark related. Even an ‘absolute’ VaR for say a bank 
(particularly in a regulatory context) is actually normally a ‘relative’ VaR, since the VaR being calculated 
usually relates to movements in Assets minus Liabilities, rather than merely Assets in isolation, or is 
dependent on a particular monetary numeraire (e.g. dollars rather than euros) so is ‘relative’ to that 
numeraire. 
 
If we are measuring returns relative to those generated by a benchmark, 𝐛 = (𝑏1, … , 𝑏𝑛)

𝑇 then we 
might defined the relative 𝑉𝑎𝑅𝛼 by reference to losses 𝐿 given by 𝐿 = (𝐚 − 𝐛). 𝐱 = ∑ (𝑎𝑖 − 𝑏𝑖)𝑥𝑖

𝑛
𝑖=1  

where the losses per unit exposure of each underlying instrument are 𝐱 = (𝑥1, … , 𝑥𝑛)
𝑇. 

 
However, it is worth noting that relative returns can be calculated mathematically in a variety of ways. 
The simplest is merely the arithmetic difference between the two returns, i.e. 𝑟(𝐚) − 𝑟(𝐛) as above. 
But returns compound geometrically rather than arithmetically (which is one reason why returns are 
often assumed to follow a geometric Brownian motion rather than an arithmetic Brownian motion). 
So for non-infinitesimal time period lengths there are alternative and potentially preferable ways of 
defining relative returns. These include (if we are trying to calculate the return 𝑟1 relative to 𝑟2, each 
expressed as fractions) geometric relative returns, i.e. 𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = (1 + 𝑟1) (1 + 𝑟2)⁄ − 1, or 

logarithmic relative returns, i.e. 𝑟𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = log(1 + 𝑟1) − log(1 + 𝑟2), rather than 

arithmetic relative returns 𝑟𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝑟1 − 𝑟2. 
 
2.3 VaR for normally distributed random losses 
 
Suppose that losses are distributed according to a normal distribution 𝐿~𝑁(𝜇, 𝜎2). Then we have: 
 

𝑉𝑎𝑅𝛼(𝐿) = 𝜇 + 𝜎𝑁
−1(1 − 𝛼) 

 
where 𝑁−1(𝑞) is the inverse (standard) cumulative normal distribution function. 
 
If losses for given unit exposures are multivariate normally distributed, i.e. 𝐱~𝑁(𝛍, 𝐕), and if the  
exposures per unit instrument are 𝐚 = (𝑎1, … , 𝑎𝑛)

𝑇 then 𝐿 = 𝐚. 𝐱~𝑁(𝜇, 𝜎2) where 𝜇 = 𝐚. 𝛍 and 𝜎2 =
𝐚𝑇𝐕𝐚. 
 
2.4 Marginal VaR, the Euler capital allocation principle and Incremental VaR 

http://www.nematrian.com/RelativeReturnComputations.aspx
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For some of the purposes mentioned in 2.1 above, it is desirable to apportion capital between 
exposures, i.e. to identify how individual risks contribute to the overall Value-at-Risk. The issue is that 
Value-at-Risk is not additive so some more sophisticated apportionment approach is required. Usually 
this involves marginal Value-at-Risk. 
 
Suppose we have the same total loss as per definition 2.1, i.e. 𝐿 = 𝐚. 𝐱 = ∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1  where the amount 

of the 𝑖’th exposure is 𝑎𝑖  and the loss arising from a unit amount of the 𝑖’th exposure is 𝑥𝑖.  
 
Definition 2.2: The marginal Value-at-Risk (with confidence level 𝛼 and time horizon 𝑇) for the 𝑖’th 

exposure is denoted 𝑀𝑉𝑎𝑅𝛼
(𝑖)

 where: 
 

𝑀𝑉𝑎𝑅𝛼
(𝑖)
=

𝜕

𝜕𝑎𝑖
(𝑉𝑎𝑅𝛼 (∑𝑎𝑖𝑥𝑖

𝑖

)) 

 
As risks arising from individual positions interact there is no universally agreed way of subdividing the 
overall risk into contributions from individual positions. However, a commonly used way is to define 
the Contribution to Value-at-Risk, 𝑐𝑖, of the 𝑖’th position, 𝑎𝑖  to be as follows: 
 

𝑐𝑖 = 𝑎𝑖𝑀𝑉𝑎𝑅𝛼
(𝑖)(𝐚) 

 
Conveniently the 𝑐𝑖 then sum to the overall VaR: 
 

∑𝑐𝑖

𝑛

𝑖=1

=∑𝑎𝑖𝑀𝑉𝑎𝑅𝛼
(𝑖)(𝐚)

𝑛

𝑖=1

=∑(𝑎𝑖𝜇𝑖 + 𝑁
−1(1 − 𝛼)

1

𝜎
(𝑎𝑖∑𝑎𝑗𝑉𝑖𝑗

𝑛

𝑗=1

))

𝑛

𝑖=1

 

⇒∑𝑐𝑖

𝑛

𝑖=1

= 𝐚. 𝛍 + 𝑁−1(1 − 𝛼)
𝜎2

𝜎
= 𝐚. 𝛍 + 𝜎𝑁−1(1 − 𝛼) = 𝑉𝑎𝑅𝛼(𝐚) 

 
This is a special case of a more general result called Euler’s capital allocation principle that applies to 
any risk measure that is homogeneous (of order 1), including VaR. 
 
Definition 2.3: a function 𝑓(𝑢1, … , 𝑢𝑛) is said to be homogeneous of order 𝑞 (constant) if it satisfies: 
 

𝑓(𝑘𝑢1, … , 𝑘𝑢𝑛) = 𝑘
𝑞𝑓(𝑢1, … , 𝑢𝑛) 

 
More specifically, a function 𝑓(𝑢1, … , 𝑢𝑛) is said to be homogeneous (or homogeneous of order 1) if it 
satisfies: 
 

𝑓(𝑘𝑢1, … , 𝑘𝑢𝑛) = 𝑘𝑓(𝑢1, … , 𝑢𝑛) 
 
Suppose a firm has used a risk model to calculate its overall required economic capital. The Euler 
Principle is one general way in which this can be translated in a fair way into economic capital for 
individual business units or risk categories for any risk measure that is homogeneous of order 1. 
Suppose there are 𝑛 units with associated loss variables 𝐿1, … , 𝐿𝑛 and total loss 𝐿 = 𝐿1 +⋯+ 𝐿𝑛. A 
coherent risk measure 𝜌 (see section 2.9 for further details of coherent risk measures) will satisfy 
positive homogeneity, i.e. 𝜌(𝑘𝐿) = 𝑘𝜌(𝐿) for any 𝑘 > 0. More generally, a function of 𝑛 variables that 
is homogeneous of order 𝑞 is one that satisfies the relationship 𝑓(𝑘𝑢1, … , 𝑘𝑢𝑛) = 𝑘

𝑞𝑓(𝑢1, … , 𝑢𝑛) for 
some constant 𝑞. Euler’s homogeneous function theorem states that such a function satisfies the 

http://www.nematrian.com/MarginalVaR.aspx
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following (where the vertical bar and subscript means that each partial derivative is evaluated at 
(𝑘𝑢1, … , 𝑘𝑢𝑛) etc.: 
 

𝑢1
𝜕𝑓

𝜕𝑢1
|
(𝑘𝑢1,…,𝑘𝑢𝑛)

+⋯+ 𝑢𝑛
𝜕𝑓

𝜕𝑢𝑛
|
(𝑘𝑢1,…,𝑘𝑢𝑛)

= 𝑞𝑘𝑞−1𝑓(𝑢1, … , 𝑢𝑛) 

 
If there are 𝑝𝑖  units of each loss 𝐿𝑖 and 𝐿(𝑝) = 𝑝1𝐿1 +⋯+ 𝑝𝑛𝐿𝑛 then we may express the risk 

measure as 𝑟(𝑝) = 𝜌(𝐿(𝑝)). If 𝜌 is homogeneous then 𝑟 is also homogeneous so: 

 

𝜌(𝐿) = 𝑟(1) =
𝜕𝑟

𝜕𝑝1
|
𝑝=1

+⋯+
𝜕𝑟

𝜕𝑝𝑛
|
𝑝=1

 

 
where 𝑝 = 1 means (𝑝1, … , 𝑝𝑛) = (1,… ,1). 
 
Definition 2.4: a capital (or risk) allocation that satisfies the Euler (capital allocation) principle involves 
subdividing total economic capital, 𝐸𝐶, into individual capital amounts for individual business 
lines/exposures using the following formula: 
 

𝐸𝐶𝑖 =
𝜕𝑟

𝜕𝑝𝑖
|
𝑝=1

 

 
Sometimes attention is focused on an alternative measure called incremental VaR that does not (in 
general) add to the total portfolio VaR. It is the change in the VaR if the whole of a given position is 
removed from the portfolio, i.e. 
 
Definition 2.5: The incremental Value-at-Risk (with confidence level 𝛼 and time horizon 𝑇) for the 𝑖’th 

exposure is denoted 𝐼𝑉𝑎𝑅𝛼
(𝑖) where: 

 

𝐼𝑉𝑎𝑅𝛼
(𝑖)
= 𝑉𝑎𝑅𝛼 (∑𝑎𝑖𝑥𝑖

𝑖

) − 𝑉𝑎𝑅𝛼 (∑ 𝑎𝑗𝑥𝑗
𝑗,𝑗≠𝑖

) 

 
Confusingly, a small number of writers define marginal VaR in line with the definition for incremental 
VaR given above and vice-versa (perhaps because one leading software vendor uses this alternative 
terminology). 
 
2.5 Marginal VaR for multivariate normally distributed (i.e. Gaussian) losses 
 
If losses for given unit exposures are multivariate normally distributed, i.e. 𝐱~𝑁(𝛍, 𝐕), and if the  
exposures per unit instrument are 𝐚 = (𝑎1, … , 𝑎𝑛)

𝑇 then the marginal VaR for the 𝑖’th exposure is: 
 

𝑀𝑉𝑎𝑅𝛼
(𝑖)(𝐚) =

𝜕𝑉𝑎𝑅𝛼(𝐚)

𝜕𝑎𝑖
=

𝜕

𝜕𝑎𝑖
(𝐚. 𝛍 + 𝑁−1(1 − 𝛼)√𝐚𝑇𝐕𝐚) 

 

⇒ 𝑀𝑉𝑎𝑅𝛼
(𝑖)(𝐚) =

𝜕

𝜕𝑎𝑖
(∑𝑎𝑗𝜇𝑗

𝑛

𝑗=1

) + 𝑁−1(1 − 𝛼)
1

2√𝐚𝑇𝐕𝐚

𝜕

𝜕𝑎𝑖
(∑∑𝑎𝑗𝑉𝑗𝑘𝑎𝑘

𝑛

𝑘=1

𝑛

𝑗=1

) 

⇒ 𝑀𝑉𝑎𝑅𝛼
(𝑖)(𝐚) = 𝜇𝑖 +𝑁

−1(1 − 𝛼)
1

𝜎
(∑𝑎𝑗𝑉𝑖𝑗

𝑛

𝑗=1

) 
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The last part of this equation can be expressed in terms of the correlation between 𝑥𝑖 and 𝐚. 𝐱 as 
follows. Suppose we view the 𝑥𝑖 as corresponding to time series 𝑥𝑖,𝑡 with 𝑇 elements (which without 
loss of generality can be assumed to be de-meaned, i.e. to have their means set to zero) and 𝐚. 𝐱 as 
corresponding to a time series 𝑦𝑡 = ∑ 𝑎𝑖𝑥𝑖,𝑡

𝑛
𝑖=1 . Then the correlation between 𝑥𝑖 and 𝐚. 𝐱 would be: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖 , 𝐚. 𝐱) =
∑ 𝑥𝑖,𝑡𝑦𝑡
𝑇
𝑡=1

√∑ 𝑥𝑖,𝑡
2𝑇

𝑡=1 ∑ 𝑦𝑡
2𝑇

𝑡=1

 

 
We also have: 
 

𝑉𝑖𝑗 =∑𝑥𝑖,𝑡𝑥𝑗,𝑡

𝑇

𝑡=1

 

∑𝑥𝑖,𝑡𝑦𝑡

𝑇

𝑡=1

=∑𝑥𝑖,𝑡∑𝑎𝑗𝑥𝑗,𝑡

𝑛

𝑗=1

𝑇

𝑡=1

=∑𝑎𝑗∑𝑥𝑖,𝑡𝑥𝑗,𝑡

𝑇

𝑡=1

𝑛

𝑗=1

=∑𝑎𝑗𝑉𝑖𝑗

𝑛

𝑗=1

 

∑ 𝑥𝑖,𝑡
2

𝑇

𝑡=1
= 𝑉𝑖𝑖 

∑ 𝑦𝑡
2

𝑇

𝑡=1
=∑∑𝑎𝑗𝑎𝑘∑𝑥𝑖,𝑡𝑥𝑗,𝑡

𝑇

𝑡=1

𝑛

𝑘=1

𝑛

𝑗=1

=∑∑𝑎𝑗𝑉𝑗𝑘𝑎𝑘

𝑛

𝑘=1

𝑛

𝑗=1

= 𝐚𝑇𝐕𝐚 = 𝜎2 

 

⇒ 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖, 𝐚. 𝐱) =
∑ 𝑎𝑗𝑉𝑖𝑗
𝑛
𝑗=1

√𝑉𝑖𝑖𝜎
 

⇒∑𝑎𝑗𝑉𝑖𝑗

𝑛

𝑗=1

= 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖 , 𝐚. 𝐱)√𝑉𝑖𝑖𝜎 

 

⇒ 𝑀𝑉𝑎𝑅𝛼,𝑖(𝐚) = 𝜇𝑖 +𝑁
−1(1 − 𝛼)𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖 , 𝐚. 𝐱)√𝑉𝑖𝑖 

 
2.6 Tail Value-at-Risk 
 
Whilst VaR may be one of the more common ways of measuring risk, it is by no means the only one. 
A commonly proposed alternative is Tail Value-at-Risk. Analogous to marginal VaR it is also possible 
to define marginal TVAR (see here for  details of its calculation for multivariate normally distributed 
variables). 
 
Definition 2.6: The Tail Value-at Risk or 𝑇𝑉𝑎𝑅𝛼 for a given confidence level 𝛼 and time horizon 𝑇 is 
defined as: 
 

𝑇𝑉𝑎𝑅𝛼 = 𝐸(𝐿|𝐿 ≥ 𝑉𝑎𝑅𝛼) 
 
Or, if the pdf of payoff 𝑋 is 𝑝(𝑥) (remember again losses are negative payoffs) and 𝑝(𝑥) is continuous 
then 𝑇𝑉𝑎𝑅𝛼 is: 
 

𝑇𝑉𝑎𝑅𝛼(𝑋) = 𝐸(−𝑋|𝑋 ≤ −𝑉𝑎𝑅𝛼) = −
1

1 − 𝛼
∫ 𝑥𝑝(𝑥)𝑑𝑥

−𝑉𝑎𝑅𝛼

−∞

 

 

http://www.nematrian.com/TailValueAtRisk.aspx
http://www.nematrian.com/MarginalTVaRMultivariateNormal.aspx
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The tail VaR is also sometimes called the Conditional VaR (because it involves a conditional 
probability). Occasionally TVaR (less commonly CVaR) is ascribed the same meaning as expected 
shortfall, see below, in which case the 1 (1 − 𝛼)⁄  factor is ignored, or is defined relative to some 
specific limit – 𝑘 that in effect defines the 𝛼 to be used in the above formula. 
 
Whilst VaR has been the industry standard risk measure for some time now (at least in the banking 
industry, see below regarding the asset management industry), there seems to be some regulatory 
drive towards greater use of Tail VaR in the future. Reasons why TVaR may be preferred for this 
purpose include: 
 
(a) VaR provides no guidance on how severe losses might be beyond the VaR cut-off point. This 

is potentially particularly important for some stakeholders (such as regulators, supervisors, 
customers and governments). If the VaR cut-off point is set at a level comparable with the 
point at which the firm defaults then losses up to the VaR cut-off point will (we might argue) 
be borne by shareholders. It is only when losses start to exceed this cut-off that costs fall to 
these wider stakeholders. So VaR in this sense can be viewed as overly shareholder-focused 
and insufficiently sensitive (as far as some other stakeholders are concerned) to magnitude of 
loss beyond the VaR cut-off. 

 
(b) VaR does not in general exhibit desirable features we might expect a risk measure to exhibit 

in relation to diversification. In particular, it does not in general satisfy sub-additivity (one of 
the four requirements a risk measure needs to exhibit for it to be coherent, see below). For 
example, suppose there are two portfolios. One is (only) exposed to one risk that has a 0.3% 
chance of occurring and if it does then it will lose £1m. The other is exposed to five 
independent risks each of which has a 0.3% chance of occurring and each involves a loss of 
£0.2m. Then we would ‘expect’ a risk measure to show the second portfolio to be less risky 
than the first one, whereas the 99.5% VaR of the second portfolio is £0.2m which is more than 
the VaR of the first portfolio (which is 0 because its risk has a likelihood of occurrence less 
than 0.5%). 

 
2.7 Expected Shortfall and Expected Policyholder Deficit 
 
Another commonly used risk measure is: 
 
Definition 2.7: The expected shortfall, 𝐸𝑆(𝑄), usually with 𝑄 = 0 is normally defined in a manner akin 
to Definition 2.7 for expected policyholder deficit:  
 

𝐸𝑆(𝑄) = − ∫ 𝑥𝑝(𝑥)𝑑𝑥

𝑄

−∞

= 𝐸𝑃𝐷(𝑄) 

 
Or more generally the expected shortfall below some trigger level 𝑄 is: 

𝐸𝑆(𝑄) = − ∫ 𝑥𝑝(𝑥)𝑑𝑥

𝑄

−∞

= 𝐸𝑃𝐷(𝑄) + 𝑄 

 
However, some commentators define ES in a manner equivalent to the definition in Definition 2.6 for 
Tail Value-at-Risk. 
 
Less commonly used (and then only in the context of insurance) is the following risk measure: 
 

http://www.nematrian.com/ExpectedShortfall.aspx
http://www.nematrian.com/TailValueAtRisk.aspx
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Definition 2.8: Given an initial net worth or capital of 𝑊, the expected policyholder deficit, 𝐸𝑃𝐷(𝑊), 
is defined as: 
 

𝐸𝑃𝐷(𝑊) = −𝐸((𝑋 −𝑊)𝐼(𝑋 < 𝑊)) = − ∫(𝑥 −𝑊)𝑝(𝑥)𝑑𝑥

𝑊

−∞

 

 

where (𝑋 < 𝑊) = {
1, 𝑋 < 𝑊
0, 𝑋 ≥ 𝑊

 . Alternative notations for 𝐼(𝑥 < 𝑊) are 𝐼{𝑋 < 𝑊}, 𝐼𝑋<𝑊 1{𝑋 < 𝑊} 

and 1𝑋<𝑊. 
 
2.8 Tracking error 
 
Although VaR and variants such as TVaR are probably the most commonly used risk measures in the 
banking world this is less true in the asset management world. Here, a particularly common risk 
measure is (ex-ante) tracking error. 
 
Definition 2.9: If 𝑋 is a random variable (e.g. a portfolio return) with (assumed forward looking) pdf 
𝑝(𝑥) then its ex-ante tracking error (if it exists) is 𝜎 where 𝜎2 = 𝑣𝑎𝑟(𝑋), i.e. the variance of the 
forward looking return. 
 
One reason some commentators do not like tracking error is that they assume that it is defined as a 
backward-looking statistic referring purely to how returns on a portfolio have behaved in the past, 
which is not necessarily a relevant risk measure for what might happen in the future (particularly if 
the portfolio positioning has changed materially). Such a tracking error is called an ex-post tracking 
error to differentiate it from an ex-ante tracking error which should refer to some assumed probability 
distribution for how portfolio returns might behave in the future. 
 
The same distinction also technically arises with VaR; we can in principle refer to an ex-post VaR akin 
to an ex-post tracking error as well as an ex-ante VaR akin to an ex ante tracking error. However, ex-
post VaRs are less commonly calculated or quoted (except to back test ex-ante VaR models), so the 
potential for confusion is less. 
 
Implicit in a focus on (ex-ante) tracking error is the view that we should not when monitoring the risk 
characteristics of an actively managed portfolio take credit for any assumed (expected) 
outperformance the manager might deliver. 
 
Tracking error also has a nice intuitive geometrical analogy. This arises because the formula for the 
(ex-ante) tracking error of the sum of two sets of exposures, i.e.: 
 

𝜎𝐚+𝐛
2 = 𝜎𝐚

2 + 2𝜎𝐚𝜎𝐛𝑐𝑜𝑟𝑟(𝐚, 𝐛) + 𝜎𝐛
2 

 
has a natural analogy with the relationship between the lengths of sides of a triangle two of whose 
sides are formed by vectors 𝐚 and 𝐛 if 𝑐𝑜𝑟𝑟(𝐚, 𝐛) is associated with cos 𝜃 where 𝜃 is the angle between 
these two vectors. 
 
2.9 Coherent risk measures 
 
We measure risks to help us manage them. Implicit in any risk management is selection between 
alternatives. Mathematically this can (usually) be framed as involving utility maximisation; we aim to 
select the ‘best’ strategy, given some suitable definition of ‘best’. 
 

http://www.nematrian.com/RiskMeasurementGlossary.aspx
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One way of defining ‘best’ in this context might be that it involves the lowest value for some specific 
risk measure, e.g. VaR. If VaR is being used for this purpose then its undesirable characteristics 
regarding diversification noted above become problematic. Partly to resolve this sort of issue, Artzner 
et al. (1999) developed a set of ‘reasonable’ axioms that it was desirable for risk measure to exhibit. 
Risk measures that exhibit these axioms are called coherent. 
 
Definition 2.10. A risk measure 𝑟(𝑥) is coherent if it satisfies the following 4 axioms: 
 

(1) Subadditivity: for any pair of loss random variables, 𝑥1 and 𝑥2: 
 

𝑟(𝑥1 + 𝑥2) ≤ 𝑟(𝑥1) + 𝑟(𝑥2) 
 
(2) Monotonicity: if 𝑥1 ≤ 𝑥2 for all states of the world then: 
 

𝑟(𝑥1) ≤ 𝑟(𝑥2) 
 
(3) Homogeneity: for any constant 𝜆 ≥ 0 and random losses 𝑥: 
 

𝑟(𝜆𝑥) = 𝜆𝑟(𝑥) 
 
(4) Translational invariance: for any loss random variable 𝑥 and constant 𝑐: 
 

𝑟(𝑥 + 𝑐) = 𝑟(𝑥) + 𝑐 
 
Points to note include: 
 
(a) VaR is not in general coherent because it does not in general satisfy subadditivity. However it 

is coherent for normally distributed loss variables or more generally ones coming from a 
distribution from the elliptical family of distributions 

 
(b) TVaR is coherent (if coming from a continuous distribution and if the threshold used is set 

appropriately, i.e. in line with the VaR). 
 
(c) (Ex-ante) tracking error is not coherent because it does not satisfy translational invariance (it 

does not change if the loss variable is shifted in all states of the world by the same constant 
𝑐). However, this does not in general present a problem when it comes to the mathematics of 
selecting between alternative strategies. It just means that the way we define utility needs to 
include a return component as well as a risk component, instead of both in effect being 
bundled up into a single overall ‘risk’ measure. 

 
To demonstrate coherence of TVaR, Artzner et al. (1999) proved the following result: 
 
Theorem 2.1. Assume that the loss random variable 𝑥 is defined on a sample space Ω. A risk measure 
𝑟(𝑥) is coherent if and only if there exists a family 𝑄 of probability measures defined on Ω such that: 
 

𝑟(𝑥) = 𝑠𝑢𝑝
𝑃
{𝐸𝑃(𝑥)|𝑃 ∈ 𝑄} 

 
Here 𝐸𝑃(𝑥) is the expected value of 𝑥 under the probability measure 𝑃. 
 
This result can then be used to demonstrate that 𝑇𝑉𝑎𝑅𝛼 is coherent (for a continuous distribution). 
Suppose that 𝑥 takes 𝑛 different values 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 and that Ω = {𝑥1, … , 𝑥𝑛}. Let 𝑘 be an 

http://www.nematrian.com/References.aspx?Ref=ArtznerEtAl1999
http://www.nematrian.com/References.aspx?Ref=ArtznerEtAl1999
http://www.nematrian.com/References.aspx?Ref=ArtznerEtAl1999
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integer such that 𝑘 ≤ 𝑛(1 − 𝛼) < 𝑘 + 1, so 𝑉𝑎𝑅𝛼(𝑥) = 𝑥𝑘+1. Let 𝐵 be the set of subsets of Ω that 
contain 𝑛 − 𝑘 elements. For any 𝐴 ∈ 𝐵 define a probability measure 𝑃𝐴 as: 
 

𝑃𝐴(𝜔) = {
1

𝑛 − 𝑘
   𝑖𝑓 𝜔 ∈ 𝐴

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Then from the above theorem 𝑟(𝑥) = 𝑠𝑢𝑝

𝐴∈𝐵
{𝐸𝑃(𝑥)} is a coherent risk measure. 

 
Let 𝐾 be the element of 𝐵 consisting of the 𝑛 − 𝑘 largest possible values of 𝑥, i.e. {𝑥𝑘+1, … , 𝑥𝑛}. Then: 
 

𝑇𝑉𝑎𝑅𝛼(𝑥) = 𝐸(𝑥|𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑥)) =
𝑥𝑘+1 +⋯+ 𝑥𝑛

𝑛 − 𝑘
= 𝐸𝑃𝐾(𝑥) 

 
and for any other 𝐴 ∈ 𝐵, 𝐸𝑃𝐴(𝑥) ≤ 𝐸𝑃𝐾(𝑥). 

 
2.10 Strengths and weaknesses of VaR 
 
Perhaps the most important advantage of VaR is that it requires little understanding of probability or 
statistics to grasp its essential meaning. However, it does have some disadvantages. We have already 
discussed above technical ones relating to coherence and also whether it gives the ‘right’ weight to 
extreme events for particular stakeholders. VaR is also basically a static measure of risk as it assumes 
a buy and hold approach to positions within the time horizon. It also relies on some assumptions about 
how markets operate and these can be invalidated when liquidity disappears. So far no one has come 
up with a really convincing way of incorporating liquidity risk into VaR. 
 
2.11 Value-at-risk for linear claims using past data 
 
A trading book will usually involve relatively rapid turnover of liquid positions. Applying VaR based on 
recent past market movements to such a book is usually reasonably straightforward as long as the 
instruments held are linear as we will typically have good time series data on the returns on the 
different exposures held within the portfolio, i.e. on the 𝐱 = (𝑥1, … , 𝑥𝑛)

𝑇 and we will also typically 
have good knowledge of our exposures, i.e. the 𝐚 = (𝑎1, … , 𝑎𝑛)

𝑇. We can then calculate a time series 
of total portfolio losses (defined as the negative of the return), i.e. of the the 𝐚. 𝐱, and apply univariate 
statistical techniques to estimate the (1 − 𝛼)-quantile of the loss distribution. The same sorts of 
techniques can also be used to estimate the 𝑇𝑉𝑎𝑅𝛼 but they will then be somewhat more involved. 
 
The main techniques involve: 
 
(a) Parametric approach: This involves estimating a parametric distribution for the portfolio 

return or loss. Two special cases involve: 
 

(i) Assuming that the distribution is a normal distribution, which some commentators 
refer to as the ‘parametric’ approach but is more usually called the ‘variance-
covariance’ approach (over the short term any mean drift will generally be small 
relative to the contribution from variance or covariance terms); and 

 
(ii) Using Extreme Value Theory, which we discuss later. 

 



©Nematrian Limited, 2020  11 

(b) Non-parametric approach: This involves estimating quantiles of the return or loss distribution 
(particularly the (1 − 𝛼)-quantile) directly from quantiles of the empirical distribution of 
returns (perhaps with some smoothing applied). 

 
Both (a) and (b) involve referring to past data, i.e. involve extrapolating the past into the future. An 
alternative approach, involving more contemporaneous data, is to estimate the VaR based on market 
implied variances and covariances. 
 
2.11 Parametric estimation of VaR 
 
One way of estimating the VaR of a portfolio is to fit a parametric distribution to time series data of 
losses and then to calculate the (1 − 𝛼)-quantile of this distribution. By ‘losses’ we nearly always 
mean here the losses that the portfolio would have incurred had its current positioning been 
replicated in the past rather than what it actually lost (the latter is of little relevance to what might 
happen in the future if the portfolio positioning has changed). 
 
If the assumed distributional form is a correct representation of the stochastic behaviour of the losses 
then generally this sort of approach will be more accurate than a non-parametric approach (because 
it makes greater use of more relevant data). However, if the assumed distributional form is 
inconsistent with important features of the true loss distribution then problems may arise. 
 
A simple example of parametric estimation is to assume that losses, over a given time horizon, are 
normally distributed, i.e. 𝑥~𝑁(𝜇, 𝜎2). If the time series of losses are assumed to be independent and 
identically distributed then we could estimate 𝜇 and 𝜎 using the sample (unweighted) means and 
standard deviations. If we wanted to give greater credibility to, say, more recent data then we could 
instead use weighted sample means and standard deviations. 
 
Three important problems arise with assuming that portfolio losses are i.i.d. normal: 
 
(a) Distributions of returns/losses on financial data series, particularly relatively high frequency 

(e.g. weekly or daily) data often exhibit tails that are fatter-tailed than the normal distribution. 
 
 A random variable 𝑥 is said to possess a fat-tailed or leptokurtic distribution if its (excess) 

kurtosis defined as follows exceeds zero, where 𝜇 = 𝐸(𝑥) and 𝜎2 = 𝐸((𝑥 − 𝜇)2). The normal 
distribution has an (excess) kurtosis of zero. 

 

(𝑒𝑥𝑐𝑒𝑠𝑠) 𝑘𝑢𝑟𝑡 = 𝐸 ((
𝑥 − 𝜇

𝜎
)
4

) − 3 

 
(b) Distributions of returns/losses on financial data series also often appear to be skewed, again 

a feature not exhibited by the normal distribution.  
 
 A random variable 𝑥 is said to possess a skewed distribution if its skew defined as follows is 

non-zero. The normal distribution has a skew of zero. 
 

𝑠𝑘𝑒𝑤 = 𝐸 ((
𝑥 − 𝜇

𝜎
)
3

) 

 
(c) Returns or losses often exhibit (conditional) heteroscedasticity by which we mean that 

squared deviations from the mean appear to show time dependency. 
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Non-zero skewness and excess kurtosis can arise for a range of reasons, some of which are explained 
further in Kemp (2009), Kemp (2010) and www.nematrian.com/erm.aspx. For example, high grade 
bonds may be expected to default relatively rarely but when they do they may experience significant 
market value declines. This makes their returns generally left skewed (i.e. skewed to the downside). 
There are a range of statistical tests that can be used to test for normality and/or for 
heteroscedasticity, see Book of Formulae, including some that refer just to skewness and kurtosis and 
others that are more sophisticated (and are capable of being used to test versus any specified 
distributional form). 
 
If observations do not appear to be coming from a normal distribution then it becomes necessary to 
select a family from which the data does appear to be coming and then to fit parameters to select the 
particular member of the family deemed to fit the data best. The two main methods are maximum 
likelihood and the method of moments, see Book of Formulae and section 6.2 of this Appendix. With 
the maximum likelihood methodology it is also possible to estimate (asymptotic) standard errors, i.e. 
confidence levels, on the accuracy of the resulting estimates. 
 

Sufficiently well behaved distributions will possess moments, i.e. 𝐸(𝑥𝑘) for 𝑘 = 1, 2,…. The mean and 

standard deviation can be viewed as corresponding to the first two moments (technically it is the 
variance, i.e. the square of the standard deviation, that relates to the second moment, and then the 
centred version, i.e. 𝐸((𝑥 − 𝜇)2). Likewise skew and (excess) kurtosis relate (in a suitably standardised 
sort of way) to the third and fourth moments respectively. It is in theory possible to identify asymptotic 
expansions that can characterise the cdf of a probability distribution by reference to skew, kurtosis 
and other higher moment analogues using the Cornish-Fisher asymptotic expansion, see Book of 
Formulae. However, if the skew and kurtosis used in this formula are estimated based on observed 
data it is worth noting that the sample skew and kurtosis give greater weight to how a distribution 
deviates from normality in the central part of the distribution than to how it deviates from normality 
in the tails (because most observations are in the centre of the distribution). Thus the Cornish-Fisher 
asymptotic expansion may not be a reliable way in practice of estimating the extent to which the tails 
of a distribution deviate from normality. Usually the quantile relevant in a VaR computation is towards 
the tail of a distribution rather than towards its centre. 
 
2.12 Heteroscedasticity 
 
The above methods assume that losses/returns are independent and identically distributed through 
time. Financial returns in many cases appear not to be independently distributed over time. In 
particular, volatility appears to be forecastable, in the sense that returns that are large in absolute 
magnitude today tend to be followed by returns that are large in absolute magnitude tomorrow 
(although less obvious is the sign of the return!). This does not mean that it is necessarily possible to 
create massively efficient trading strategies involving buying and selling volatility. Instead the term 
structure of option implied volatility as derived from option prices in effect incorporate market views 
about how strongly autocorrelated (implied) volatility might be in the future. 
 
The standard approach to modelling this phenomenon involves use of Generalised Autoregressive 
Conditional Heteroscedasticity (GARCH) models. These are autoregressive in the volatility component 
(mainly) rather than in any mean drift component primarily because the latter, if they existed, would 
more naturally permit the construction of implausibly efficient trading strategies. Again, we see the 
underlying adoption of the premise that we should be wary when measuring and managing risk about 
assuming that active management strategies will add value relative to passive alternatives. 
 
A simple example of a GARCH model is the GARCH(1,1) model, This would involve the following (in 
practice 𝜇 will slowly evolve as additional data is received): 

http://www.nematrian.com/References.aspx?Ref=Kemp2009
http://www.nematrian.com/erm.aspx
http://www.nematrian.com/TestsForNormality.aspx
http://www.nematrian.com/ERMFormulaBook.aspx
http://www.nematrian.com/ERMFormulaBook.aspx
http://www.nematrian.com/CornishFisherDerivation
http://www.nematrian.com/ERMFormulaBook.aspx
http://www.nematrian.com/ERMFormulaBook.aspx
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𝑥𝑡+1 = 𝜇 + 𝜎𝑡𝜀𝑡 
𝜀𝑡~𝑁(0,1) 

 
where for, say, a GARCH(1,1) model 
 

𝜎𝑡
2 = 𝛼 + 𝛽(𝑥𝑡 − 𝜇)

2 + 𝛾𝜎𝑡−1
2  

 
Here 𝛼, 𝛽 and 𝛾 are positive constants. If we rule out explosive behaviour by requiring 𝛿 = 𝛽 + 𝛾 < 1 

we may derive the steady state (long-term) volatility of 𝑥𝑡 as 𝜎̅ = √𝛼 (1 − 𝛿)⁄  and the term structure 
of volatility, i.e. the conditional expectation of volatility, is: 
 

𝑣𝑡,𝑇
2 = (𝑇 − 𝑡)𝜎̅2 + (𝜎𝑡+1

2 − 𝜎̅2)
(1 − 𝛿)𝑇−𝑡

1 − 𝛿
 

 
So, after an unusually large shock, volatility will gradually revert to its long-run mean. 
 
Even if 𝜀𝑡 are normally distributed (so returns are conditionally normal) such a process is 
unconditionally fat-tailed, i.e. the 𝑥𝑡 will appear to have fatter-tails than a normal distribution viewed 
just as a single, non-time delineated, series. This arises because such a GARCH model then involves a 
distributional mixture of normal distributions all with the same mean but with different standard 
deviations. Observations in the tail of the (unconditional) distribution will tend to be drawn from 
normal distributions with relatively large standard deviations whilst observations in the centre of the 
(unconditional) distribution will tend be drawn from ones with relatively small standard deviations. 
This leads to a distributional form that is more peaked in the centre and more spread out in the tail 
than a normal distribution. 
 
Perhaps the commonest relatively simple approach to parametric modelling that is actually used for 
trading book problems is a simplified version of the GARCH(1,1) model popularised by RiskMetrics 
(originally JP Morgan). This involves the losses being assumed to come from the following process 
(again in practice 𝜇 will slowly evolve as additional data is received): 
 

𝑥𝑡+1 = 𝜇 + 𝜎𝑡𝜀𝑡 
𝜀𝑡~𝑁(0,1) 

𝜎𝑡
2 =

𝑇

𝑇 − 1
∑𝜆𝑖(𝑥𝑡−𝑖 − 𝜇)

2

𝑇−1

𝑖=0

 

 

where the 𝜆𝑖 are weights applied to past squared deviations, i.e. the 𝜆𝑖 ≥ 0 and ∑ 𝜆𝑖
𝑇−1
𝑖=0 = 1. The term 

𝑇 (𝑇 − 1)⁄  is a small sample adjustment so that the variance is not understated. Often the weights 
are constructed so that they form an exponentially declining series as one goes back in time, i.e. 𝜆𝑖 =

𝑘𝜆𝑖 where 𝑘 is chosen so that ∑ 𝜆𝑖
𝑇−1
𝑖=0 = 1. A typical value of, say, 𝜆 = 0.97 for daily data would result 

in observations lagged by more than a month being given little weight. More precise methods for 
introducing a small sample adjustment can be developed, see e.g. 
http://www.nematrian.com/WeightedMomentsAndCumulants.aspx. As with all use of past data for 
such purposes, some additional thought is generally needed to deal with incomplete data series and 
other situations where we do not have quite the data we would like. 
 
2.13 Non-parametric VaR modelling 
 
If there is no obvious parametric distributional form for the returns/losses we may prefer to use a 
non-parametric approach. Suppose we have a sample of 𝑛 realisations of losses, 𝑥1, … , 𝑥𝑛 (again these 

http://www.nematrian.com/WeightedMomentsAndCumulants.aspx
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would normally be the losses had the current positions been prevailing at the time). We reorder the 
sample so that 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). 𝑥(𝑟) is called the 𝑟-th order statistic for this sample (1 ≤ 𝑟 ≤

𝑛). 
 
An obvious non-parametric estimator for 𝑉𝑎𝑅𝛼 is 𝑥(𝑘) where 𝑘 − 1 < 𝑛(1 − 𝛼) ≤ 𝑘. For this to be a 

sensible estimator we must implicitly be assuming that the observations are not evolving conditionally 
through time. 
 
It is possible to estimate standard errors for the resulting estimators but the process is somewhat 
more involved than for maximum likelihood. Suppose the observations are coming from a probability 
distribution with cdf 𝐹(𝑥) and pdf 𝑓(𝑥). Then the probability, 𝑃, that, in a sample of 𝑛 observations, 
𝑟 − 1 fall below 𝑦, 1 falls in the range [𝑦 − 𝑑𝑦 2⁄ , 𝑦 + 𝑑𝑦 2⁄ ] (for small 𝑑𝑦) and 𝑛 − 𝑟 fall above 𝑦 is: 
 

𝐹(𝑦)𝑟−1𝑓(𝑦)𝑑𝑦(1 − 𝐹(𝑦))
𝑛−𝑟

 

 

So at 𝑦 = 𝑥(𝑟) it is, where 𝐹(𝑟) = 𝐹(𝑥(𝑟)): 

 

𝐹(𝑟)
𝑟−1(1 − 𝐹(𝑟))

𝑛−𝑟
𝑑𝐹(𝑟) 

 
Suppose we define 𝑞 = 𝑟 𝑛⁄  and 𝑝 = 1 − 𝑞 and suppose we identify the mode of the distribution of 
𝑥(𝑟). We can do this by taking logs of the above definition, taking derivatives and setting to zero. This 

gives: 
 

(𝑟 − 1)
𝑓(𝑟)

𝐹(𝑟)
+ (𝑛 − 𝑟)

𝑓(𝑟)

1 − 𝐹(𝑟)
+
𝑓(𝑟)
′

𝑓(𝑟)
= 0 

 
If 𝑛 → ∞ and if we hold 𝑞 fixed this simplifies to: 
 

𝑞

𝐹(𝑟)
−

𝑝

1 − 𝐹(𝑟)
= 0 

 
So as expected, 𝐹(𝑥̃) = 𝑞 where 𝑥̃ is the non-parametric estimator given above and so the probability 
that losses will exceed the mode of the distribution of 𝑥(𝑟) in the limit equals the correct confidence 

level for 𝑉𝑎𝑅𝛼. 
 
Consider now the distribution of  𝑥̃ in the neighbourhood of the mode of the distribution of 𝑥(𝑟). 

Suppose 𝐹(𝑥(𝑟)) = 𝑞 + 𝜉. Then 𝑃 = (𝑞 + 𝜉)𝑛𝑞(𝑝 − 𝜉)𝑛𝑝𝑑𝐹(𝑟). Taking logs and expanding we have: 

 

𝑛𝑞 log (1 +
𝜉

𝑞
) + 𝑛𝑝 log (1 −

𝜉

𝑞
) = 𝑛𝑞 (

𝜉

𝑞
−
𝜉2

2𝑞2
) + 𝑛𝑝(−

𝜉

𝑞
−
𝜉2

2𝑞2
) + 𝑂(𝜉3) = −

𝑛𝜉2

2𝑝𝑞
+ 𝑂(𝜉3) 

 
For large samples we may ignore higher order terms, so the distribution of 𝜉 is proportional to 

exp (−
𝑛𝜉2

2𝑝𝑞
) 𝑑𝜉, i.e. 𝜉 is asymptotically normal with variance 𝑝𝑞 𝑛⁄ . The variance of 𝑥(𝑟) therefore 

asymptotically satisfies: 
 

𝑝𝑞

𝑛
≈ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜉) ≈ 𝑓2(𝑥(𝑟))𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥(𝑟))     ⟹     𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥(𝑟)) ≈

𝑝𝑞

𝑛𝑓(𝑟)
2  
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To use this formula to determine the standard error of the estimate we need to calculate the density, 
𝑓, of the loss random variable in the neighbourhood of 𝑥(𝑟). 

 
We may also calculate non-parametric confidence intervals for the VaR. The non-parametric 𝑉𝑎𝑅𝛼 
estimate, say 𝜉𝑞, corresponds to some order statistic 𝑥(𝑞) where 𝑞 < 𝑛(1 − 𝛼) ≤ 𝑞 + 1. To construct 

a confidence interval we observe that: 
 

𝑃𝑟(𝑥(𝑟) < 𝜉𝑞) = 𝑃𝑟(𝑥(𝑠) ≤ 𝜉𝑞) + 𝑃𝑟(𝑥(𝑟) ≤ 𝜉𝑞 < 𝑥(𝑠)) 

 
So if we take two order statistics, say 𝑥(𝑟) and 𝑥(𝑠), from our sample which bracket the VaR estimate 

we have: 
 

𝑃𝑟(𝑥(𝑟) ≤ 𝜉𝑞 < 𝑥(𝑠)) = 𝑃𝑟(𝑥(𝑟) ≤ 𝜉𝑞) − 𝑃𝑟(𝑥(𝑠) ≤ 𝜉𝑞) 

⟹ 𝑃𝑟(𝑥(𝑟) ≤ 𝜉𝑞 < 𝑥(𝑠)) = ∑(
𝑛

𝑟 + 𝑖
)𝑞𝑟+𝑖(1 − 𝑞)𝑛−𝑟−𝑖

𝑛−𝑟

𝑖=0

−∑(
𝑛

𝑠 + 𝑖
) 𝑞𝑠+𝑖(1 − 𝑞)𝑛−𝑠−𝑖

𝑛−𝑠

𝑖=0

 

⟹𝑃𝑟(𝑥(𝑟) ≤ 𝜉𝑞 < 𝑥(𝑠)) =∑(
𝑛

𝑖
) 𝑞𝑖(1 − 𝑞)𝑛−𝑖

𝑠−1

𝑖=𝑟

 

 
2.14 Value-at-risk for non-linear claims 
 
Additional challenges arise if the portfolio contains non-linear claims, e.g. options or other non-linear 
derivatives. The problem is that the price of the relevant derivative depends on a non-linear way on 
parameters such as volatility, maturity, strike price etc. and it is not possible to collect historical 
returns data for derivatives conditional on all these parameters. 
 
However, what we can normally do is apply option pricing theory to model the prices of the derivatives 
as non-linear functions of underlying cash security prices and other risk factors. The portfolio return 
distribution can then be viewed as a weighted sum of non-linear functions of security prices (and 
possibly other series such as volatilities) for which there is historical time series data. 
 
Some other instruments, e.g. bonds and swaps, come in so many varieties that we often also need to 
use a similar price function methodology for them. 
 
Two problems may arise with the use of pricing models for this purpose: 
 
(a) If the options are complicated then the price functions may be so complicated that in practice 

we may need to employ numerical techniques to calculate them; and 
 
(b) The distribution of weighted sums of functions of random variables may be very difficult to 

calculate. 
 
Both (a) and (b) can in principle be addressed using Monte Carlo or other numerical techniques but 
the computational cost may be excessive. It is therefore helpful to have some analytical 
approximations available, some of which are set out below. 
 
2.15 The delta approach 
 
A natural way of measuring the risks involved with an option is to view holding an option as 
approximately the same as holding a number of units of the underlying security equal to the delta of 
the option. If the only variable on which the price of the option depends that changes is the price of 
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the underlying, and if it only changes by a small amount then the delta measures the sensitivity to 
such changes. 
 
Thus if the call price of the option is  𝐶(𝑆, 𝐾, 𝑡, 𝜎) where 𝑆 is the price of the underlying, 𝐾 is the strike 
price, 𝑡 is time and 𝜎 is volatility (here assumed constant) then the natural way to choose the 
equivalent number of units of the underlying is to perform a first order Taylor expansion in 𝑆, i.e. 
using: 
 

∆𝐶 = 𝐶(𝑆 + ∆𝑆, 𝐾, 𝑡, 𝜎) − 𝐶(𝑆, 𝐾, 𝑡, 𝜎) ≈
𝜕𝐶

𝜕𝑆
∆𝑆 

 
So, calculating the VaR (for a single position) is then roughly equivalent to calculating the (1 − 𝛼)-
quantile for 𝑑𝑆 and scaling by 𝜕𝐶 𝜕𝑆⁄ . 
 
In principle, we might also wish to model the mean change, i.e. drift, using: 
 

∆𝐶 ≈
𝜕𝐶

𝜕𝑆
∆𝑆 +

𝜕𝐶

𝜕𝑡
∆𝑡 

 
However, for short holding periods the VaR is determined mainly by the martingale component of the 
price process rather than by its mean drift, so the drift would often be ignored. 
 
More generally, if we have a portfolio of 𝑛 instruments 𝐚 = (𝑎1, … , 𝑎𝑛)

𝑇 and each of these 
instruments has a price function 𝑣𝑖 dependent on 𝑚 factors 𝐟 = (𝑓1, … , 𝑓𝑚)

𝑇 with the price function 
of the overall portfolio then being 𝑉(𝑓1, … , 𝑓𝑚) = ∑ 𝑣𝑖(𝑓1, … , 𝑓𝑚)

𝑛
𝑖=1  then the above generalises to 

calculating the VaR using the following: 
 

∆V =∑𝑎𝑖
𝜕𝑉𝑖
𝜕𝑡
∆𝑡

𝑛

𝑖=1

+∑∑𝑎𝑖
𝜕𝑉𝑖
𝜕𝑓𝑗

∆𝑓𝑗

𝑚

𝑗=1

𝑛

𝑖=1

= 𝜇𝐚 +∑𝑞𝑗∆𝑓𝑗

𝑚

𝑗=1

 

 

where 𝜇𝐚 = ∑ 𝑎𝑖
𝜕𝑉𝑖

𝜕𝑡
𝑑𝑡𝑛

𝑖=1  and 𝛿𝑗 = ∑ 𝑎𝑖
𝜕𝑉𝑖

𝜕𝑓𝑗

𝑛
𝑖=1 . Set 𝐪𝐚 = (𝑞1, … , 𝑞𝑛)

𝑇. 

 
The delta approach is biased upwards compared to the true VaR for long positions in standard puts or 
calls. This follows from Jensen’s inequality because the prices of these types of claims when expressed 
as a function of the underlying security price are convex (upwards). For short positions the opposite 
is true. 
 
2.16 Refinements 
 
If a first order approximation does not work well then a natural generalisation is to employ a second 
order expansion, i.e. one involving both the option delta and the option gamma and hence both ∆𝑓𝑖 
and ∆𝑓𝑖. ∆𝑓𝑗 

 
In principle, higher order terms can also be included. However, this is rarely done. This is partly 
because most analysis of the sensitivity of the price of a derivative to its underlying focuses on delta 
and gamma (and these, with a sensitivity to time, are the only sensitivities that appear in Ito’s formula 
used in derivative pricing theory). More importantly, it misses the potential dependency of the price 
function to variables other than the price of the underlying. Recall, for example, that the Black-Scholes 
price of a call option involves a formula along the lines of: 
 

http://www.nematrian.com/MnBSCallPrice.aspx
http://www.nematrian.com/MnBSCallPrice.aspx
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𝐶𝑡 = 𝑆𝑡𝑒
−𝑞(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒

−𝑟(𝑇−𝑡)𝑁(𝑑2) 
where 
 

𝑑1 =
log(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝑞 + 𝜎2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝑑2 =
log(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝑞 − 𝜎2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
= 𝑑1 − 𝜎√𝑇 − 𝑡 

 
and 𝜎 here is the option’s implied volatility, 𝑟 is an interest rate and 𝑞 is a dividend yield. 
 
In particular, we see that the price depends on the implied volatility, which is not necessarily constant 
through time (or, in reality, for options on the same underlying with different strikes and maturities). 
 
A consequence is that if we want to develop effective hedging approaches to portfolios with options 
we need not only to hedge the option delta but also to hedge the option vega, i.e. the sensitivity of 
the option price to changes in the implied volatility. For the above sort of derivative, we might also in 
principle need to hedge its other sensitivities, e.g. to 𝑟 and 𝑞. We may also want to hedge the option 
gamma (i.e. the sensitivity of the delta to changes in the price of the underlying) to minimise 
transaction costs incurred when dynamically hedging the position. 
 
In a like fashion, a more exact VaR methodology needs to take account of the sensitivity of the price 
to changes in implied volatility (and to other factors on which the price depends). We can think of this 
as involving including extra terms in the equation for ∆V relating to sensitivity to implied volatility etc. 
 
Some of the complexities involved are illustrated by material included in BCBS (2016), the latest Basel 
minimum capital requirements for market risk, also colloquially known as the Fundamental Review of 
the Trading Book. 
 

3. Traditional portfolio market risk models 
 
3.1 Introduction 
 
Most equity portfolios and other relatively straightforward types of portfolio expressing market risk 
contain many different instruments each of which is expected to behave somewhat differently. A 
major aspect of portfolio risk models is to provide some simple but not overly simplistic way of 
aggregating the impact of these individual exposures. The most common way in which this is done is 
via factor models. 
 
There are three main ways of estimating the factor structures underlying risk models using time series 
data: 
 
(a) A fundamental risk model ascribes certain fundamental factors (such as price to book) to 

individual securities. These factor exposures are exogenously derived, e.g. by reference to a 
company’s annual report and accounts. The factor exposures for a portfolio as a whole (and 
for a benchmark, and hence for a portfolio’s active positions versus a benchmark) are the 
weighted averages of the individual position exposures. Different factors are assumed to 
behave in the future in a manner described by some joint probability distribution.  The overall 
portfolio risk (versus its benchmark) can then be derived from its active factor exposures, this 
joint probability distribution and any additional variability in future returns deemed to arise 
from security specific idiosyncratic behaviours. 

http://www.nematrian.com/References?Ref=BCBS2016
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(b) An econometric risk model is similar to a fundamental model except that the factor exposures 

are individual security-specific sensitivities to certain pre-chosen exogenous economic 
variables, e.g. interest rate, currency or oil price movements. The sensitivities are typically 
found by regressing the returns from the security in question against movements in the 
relevant economic variables, typically using multivariate regression techniques. 

 
(c) A statistical risk model eliminates the need to define any exogenous factors, whether 

fundamental or econometric. Instead we identify a set of otherwise arbitrary time series that 
in aggregate explain well the past return histories of a high proportion of the relevant security 
universe, ascribing to elements of this set the status of ‘factors’. Simultaneously we also derive 
the exposures that each security has to these factors. This can be done using principal 
components analysis or other similar techniques, see below. 

 
In practice these methods are less differentiated than first appears to be the case. This is because 
fundamental factors and/or factors identified via econometric modelling will generally only be 
considered valid if they also appear to have exhibited meaningful explanatory power, which means 
that in aggregate they should also largely coincide with factors derived from statistical analysis. 
Statistical analysis should identify the factors that best explain the past; one reason that we do not 
necessarily adopt purely statistical techniques all the time is because we think that incorporating more 
qualitatively driven factors may make the risk model better at explaining the future even if not then 
quite so good at explaining the past. 
 

All three models generally in effect try to minimise the squared residuals ∑𝜀𝑗,𝑡
2  (or some other 

appropriate loss function) involved in a model for the returns 𝑟𝑗,𝑡 on the 𝑗’th instrument along the lines 

of the following equation (or with 𝑥𝑘,𝑡 replaced by 𝑓𝑗(𝑥𝑘,𝑡) for instruments that are expected to 

behave non-linearly in response to factor 𝑥𝑘,𝑡, the 𝑓𝑗 can then be viewed as akin to a pricing function 

for that instrument): 
 

𝑟𝑗,𝑡 = 𝛼𝑗 + 𝛽𝑗,𝑘𝑥𝑘,𝑡 + 𝜀𝑗,𝑡 

 
For example, to create a fundamental factor model, we might: 
 
(i) Identify fundamental characteristics, i.e. ‘factors’, that we believe a priori have some 

explanatory merit; 
 
(ii) Calculate return series, 𝑥𝑘,𝑡, that correspond to a unit amount of a given factor exposure (this 

is typically done by calculating a suitable ‘average’ return across all securities exhibiting this 
factor, after stripping away the impact of any exposures the securities have to any to other 
factors, so is actually done in tandem with step (iii)); 

 
(iii) Carry out a multiple regression analysis of 𝑟𝑗,𝑡 versus 𝑥𝑘,𝑡 based on the above equation, to 

identify the 𝛽𝑗,𝑘. This simultaneously identifies the residuals remaining after the impact of the 

relevant factor exposures; 
 
(iv) Impose some structure on the residuals (perhaps using ‘blind’ factors as per a statistical 

model); 
 
(v) Identify the expected future behaviour of the factors in (i) and the residuals in (iv). 
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It is helpful to understand some of the inherent limitations that arise with risk models built up from 
past time series data. The most obvious is that the past is not necessarily a good guide to the future. 
However there are others that are more subtle in nature and can lead risk managers astray if they do 
not take proper account of them when using factor models. They are perhaps best appreciated by 
considering in more detail how a purely statistical risk model might operate. 
 
3.2 Linear algebra and principal components 
 
Suppose we have 𝑖 = 1,… ,𝑚 data series (e.g. returns on different instruments) each with 𝑗 = 1,… , 𝑛 
observations, 𝑋𝑖,𝑗, that are coincident in time across the different data series. Suppose the 𝑚 ×𝑚 

covariance matrix of the (empirical) covariances between the different series is 𝐕. The eigenvalues 
and eigenvectors of 𝑉 are the values of 𝜆 (scalar) and associated 𝐱 (vector) for which 𝐕𝐱 = 𝜆𝐱. An 
𝑚 ×𝑚 matrix has 𝑚 (not necessarily distinct) eigenvalues and associated eigenvectors. Eigenvectors 

associated with distinct eigenvalues are orthogonal, i.e. 𝐱𝑖
𝑇𝐱𝑘 = 0 for 𝑖 ≠ 𝑘. Orthonormal 

eigenvectors have |𝐱𝑖| = 𝐱𝑖
𝑇𝐱𝑖 = 1 and 𝐱𝑖

𝑇𝐱𝑘 = 0 for 𝑖 ≠ 𝑘.  For any distinct eigenvalue the associated 
orthonormal eigenvector is unique up to a change of sign. If 𝑞 > 1 eigenvalues all take the same value 
then it is possible to find 𝑞 orthonormal eigenvectors corresponding to all of these eigenvalues. For 
empirical covariance matrices, 𝐕 is symmetric non-negative definite (and positive definite if no two 
data series are perfectly correlated) and all of its 𝑚 eigenvalues, 𝜆𝑖, are greater than or equal to zero. 
One way of telling if a matrix is positive definite is to test whether it is possible to apply a Cholesky 
decomposition to it. 
 
The eigenvalues and associated eigenvectors of an empirical covariance matrix may be sorted so that 
𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0. The first principal component is the mixture of the underlying (de-meaned) 

series, i.e. the 𝑟𝑗 = ∑ 𝑏𝑞(𝑋𝑞,𝑗 − 𝑋̅𝑖)
𝑚
𝑞=1 , that corresponds to the orthonormal eigenvector, 𝐛, 

corresponding to the largest eigenvalue of 𝑉. This choice of 𝐛 maximises 𝐛𝑇𝐕𝐛 subject to |𝐛| = 1,  
Other (lesser) principal components correspond to orthonormal eigenvectors corresponding to 
smaller eigenvalues. 
 
Eigenvectors form a basis for the relevant vector space. By this we mean that any data series (with 
zero mean) derivable from the 𝑚 underlying data series can be formed as a linear combination of the 
eigenseries corresponding to the different eigenvectors. 
 
Statistical factor models generally select factors that correspond to the most important principal 
components. Often an overall market factor is almost coincident with the first principal component. 
This is because it turns out that the principal components also, in a suitable sense, explain the most 
variability across the universe of instruments from which the principal components are derived. As 
the eigenvectors form a basis set, if we include in our factor model all of the non-zero eigenvectors 
and corresponding eigenseries then the entire variability in the dataset is captured. 
 
Certain characteristics of principal components then take on added relevance: 
 
(a) If we have 𝑛 observations per data series then there are at most 𝑛 − 1 non-zero eigenvalues 

even if there are many more data series, i.e. even if 𝑚 ≫ 𝑛. Suppose we have 60 months’ 
worth of data. This means that we can only ever find non-zero 59 eigenvalues that in 
aggregate explain the entire variability of the dataset. A simple way to understand this is to 
note that linear combinations of the 𝑛 series consisting of (1,0,0,… ), (0,1,0,0, … ), 
(0,0,1,0, … ), …, (0,0, … ,0,1) are able to replicate any series of 𝑛 elements and there is in fact 
one spare if we also require the means of each series to be zero. 

 

http://www.nematrian.com/MnCholeskyDecomposition.aspx
http://www.nematrian.com/MnCholeskyDecomposition.aspx
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(b) For a typical value for 𝑛, say 60 or more, most of the observable eigenvalues that are non-zero 
generally do not appear to be statistically different to what we might expect were the data to 
be entirely random. Perhaps 5-10 appear meaningfully non-random in most cases. 

 
(c) This means that most of the factor structure beyond a handful of relatively clear factors is 

subjective. There is no past data that can reliably differentiate between views on the finer 
structure of the factor model (i.e. the part of the structure dependent on eigenvectors outside 
the handful of more important factors where there is reasonable statistical evidence of their 
existence). The finer structure of portfolios optimised using virtually any portfolio 
optimisation technique will generally be heavily (if not entirely) dependent on our own views 
about properties this finer structure ‘should’ exhibit rather than on features that can be 
rigorously demonstrated by reference to past data. 

 
(d) Another subtlety is that the principal components change if we change the weights given to 

different instruments, so our choice of universe will also influence any such analyses. 
 
3.3 Market consistent risk measurement 
 
In the above analysis we have focused on risk models that are derived to a large extent from past data. 
One way of circumventing some of the issues noted above is place greater weight on more 
contemporaneous data which we might expect to provide some guide to the future, e.g. implied 
volatilities derived from current option prices. Points to note include: 
 
(a) There is a limit to the types of options traded in practice, so this does not provide a complete 

solution in practice to the fine structure issue noted in the previous section. 
 
(b) There are certain philosophical merits to market consistent risk measurement. For example, 

by linking risk measures to option pricing theory we make it less likely that we bias our actions 
towards those that would have been effective in the past but which the market no longer 
believes will be effective in the future. For example, purely focusing on past data might 
suggest that we can sell large amounts of particular types of out-of-the money put options 
with impunity because the behaviours that would have triggered payouts on them have never 
happened in the past. However, a reason such options might have a material value is because 
the market is inferring that payouts might plausibly occur in the future. It is dangerous in such 
circumstances to assume that we know better than the market about what might happen in 
the future merely on the basis of analysis of past data (which all market participants should 
have access to). 

 
3.4 Idiosyncratic risk 
 
Given the inherent uncertainties in the finer structure of the factor structure (which in practice even 
an adoption of a fully market consistent focus does not fully circumvent) it is common to subdivide 
risk models into two parts, one involving a factor structure component that involves a relatively small 
number of factors and one involving idiosyncratic components that are specific to individual 
instruments. If our underlying model involves multivariate normal behaviour then this involves 
characterising the overall covariance matrix, 𝐕, by a model in which we have factor exposures, 𝑓𝑖𝑗, for 

the 𝑖’th instrument to the 𝑗’th factor (forming a matrix 𝐅), a covariance matrix 𝐕̂ between the factors 
and some idiosyncratic terms usually expressed via a diagonal (or nearly diagonal) matrix, 𝐁, of 
idiosyncratic variances. Usually the number of factors is much less than the number of instruments, 
so this formulation is a much more parsimonious way of characterising the co-dependency between 
different exposures.  



©Nematrian Limited, 2020  21 

 
The ex-ante tracking error (and risk measures dependent on it, such as VaR) then involves a 
computation along the lines of the following: 
 

𝜎2 = 𝐚𝑇(𝐅𝑇𝐕̂𝐅 + 𝐁)𝐚 = (𝐅𝐚)𝑇𝐕̂(𝐅𝐚) +∑𝑎𝑖
2𝜎𝑖

2 

 
If a firm has a dual listing and therefore two separate equity instruments exist relating to essentially 
the same underlying assets but perhaps with different tax or other investor characteristics (or if a firm 
has a major subsidiary that is separately quoted) then the different securities involved would share 
common idiosyncratic characteristics. The matrix characterising idiosyncratic terms would then only 
be ‘nearly’ diagonal. 
 
3.5 Back-testing market risk models 
 
As market risk models have become more sophisticated and particularly as they have become more 
commonly used for setting regulatory capital requirements greater attention has been placed on back-
testing models to see whether they appear to be robust based on what they would have predicted 
had they been applied in the past. 
 
All back testing suffers from the possibility of look-back bias, i.e. with likely reliability of the model 
being distorted by our knowledge of the past and therefore our ability to select models that appear 
reasonable based on that knowledge. There are ways of reducing look-back bias, e.g. using out-of-
sample approaches in which we do not test the predictions of a single model applied to all past time 
periods but instead we test the predictions of a model formulation with the formulation as applied to 
a particular past time period only using data that would already have been available at that time. 
However, even this has some look-back bias as the model formulation will itself have been selected 
from a range of possibilities. This selection can be biased as it will inevitably be based on what we now 
know about the past. We do not attempt to identify in this section how to adjust mathematically for 
look-back bias. 
 
3.6 Statistical background: maximum likelihood 
 
Suppose we have a sample of 𝑛 observations, 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝑇 each of which is an independent 
draw from a distribution 𝐹(𝑥|𝜃) with pdf 𝑓(𝑥|𝜃) where 𝜃 is a vector of unobserved parameters. The 
likelihood of the sample (strictly speaking the unweighted likelihood as in some cases we may want to 
give more weight to some observations than to others), 𝐿, is defined as the product of the densities: 
 

𝐿(𝐱|𝜃) = 𝑓(𝑥1|𝜃)𝑓(𝑥2|𝜃)…𝑓(𝑥𝑛|𝜃) 
 
We may then estimate 𝜃 by maximising 𝐿 with respect to 𝜃. This is called maximum likelihood 
estimation. So the maximum likelihood (ML) estimator is: 
 

𝜃 = 𝜃𝑀𝐿 ≡ arg max𝜃 𝐿(𝐱|𝜃) 
 
As log(. ) Is a monotonically increasing function we have arg max𝜃 𝐿(𝐱|𝜃) = arg max𝜃 log 𝐿(𝐱|𝜃) so 
commonly we actually maximise the log likelihood: 
 

log 𝐿(𝐱|𝜃) =∑log𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 

 

http://www.nematrian.com/MnProbDistMLE.aspx
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The ML estimator has some desirable properties: 
 
(a) It is consistent, so lim

𝑛→∞
𝜃𝑀𝐿 = 𝜃. 

 
(b) It is asymptotically Gaussian, in the sense that: 
 

𝜃𝑀𝐿~(𝑎𝑠𝑦𝑚𝑝𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦) 𝑁(𝜃, 𝐼
−1(𝜃)) 

 
 where 𝐼(𝜃) is the information matrix defined as 
 

𝐼(𝜃) = −𝐸 (
𝜕2 log 𝐿

𝜕𝜃𝜕𝜃𝑇
) 

 
(c) It is asymptotically efficient in the sense that it is the consistent, asymptotically Gaussian 

estimator with the smallest variance (meaning the covariance matrix of any other such 
estimator minus that of the ML estimator is positive definite). 

 
The other main method of fitting distributions to data is the method of moments. With the method of 
moments applied to univariate data, we calculate some moments for the observed data (or 
equivalents such as centred moments or cumulants). For example, the first moment of a distribution 
is its mean 𝐸(𝑋) and the second moment is 𝐸(𝑋2). The variance of a distribution is technically a 

centred moment and is 𝐸 ((𝑋 − 𝐸(𝑋))
2
) = 𝐸(𝑋2) − 𝐸(𝑋)2. We generally calculate the first 𝑛 

moments of the distribution if there are 𝑛 different parameters to estimate. We then equate the 
observed values of these moments with expressions that identify their values for any given set of 
parameters defining the distribution. The approach is relatively simple to implement but is not always 
robust. For example, it may result in inappropriate or impractical values for the parameters. It is also 
not always clear how to handle any small sample adjustments. For example, should we equate the 

second centred moment with 
1

𝑛
∑ (𝑥𝑖 − 𝜇)

2𝑛
𝑖=1  or with  

1

𝑛−1
∑ (𝑥𝑖 − 𝜇)

2𝑛
𝑖=1 ? 

 
An approach that is philosophically connected with method of moments and circumvents its 
weaknesses (but typically at the expense of losing its computational simplicity) is the generalised 
method of moments (GMM) approach. In this approach we select parameters that ‘best’ fit selected 
moments, given some criterion for best. ‘Best’ is typically defined as minimising overall divergence 
versus all targeted moments simultaneously, often using a (positive semi-definite) weighting matrix, 

𝑊, i.e. it involves choosing as the GMM estimator the parameter vector 𝜃 that minimises 

𝐸 (𝑔(𝑋|𝜃))
𝑇
𝑊𝐸 (𝑔(𝑋|𝜃)) where 𝑔(𝑋|𝜃) is the difference between the observed moment and the 

theoretically expected moment if the parameter vector were 𝜃.  Given suitable regularity criteria, the 
GMM estimator (for a given 𝑊) is consistent. We can also use the approach to test whether the 
observations appear to satisfy some moment constraint derived from economic theory. 
 

If 𝑊 is chosen appropriately (as the inverse of Ω = 𝐸(𝑔(𝑋|𝜃0))
𝑇
𝐸(𝑔(𝑋|𝜃0)) where 𝜃0 is the true 

underlying parameter set that 𝜃 is aiming to estimate) then the GMM estimator is also asymptotically 
efficient. However, we cannot of course determine Ω−1 in advance because by definition we need to 
know the value of 𝜃0  to compute it. Practical implementations of GMM often involve two-step or 
iterated approaches, in which some simpler form is initially assumed for Ω which is replaced later on 

in the algorithm by a more accurate estimate derived from intermediate 𝜃 estimates. 
 
3.7 The likelihood ratio test 
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Using likelihoods we may construct hypothesis tests. Suppose we have a set of 𝑘 restrictions 
(constraints) on the parameters of the form 𝐶(𝜃) = 𝟎 where 𝟎 is a 𝑘-vector of zeros. If these 
restrictions actually applied then the restrictions should not reduce the likelihood. So, suppose we 
estimate the model with and without the restrictions. The ratio of the restricted likelihood, 𝐿𝑅, to the 
unrestricted likelihood, 𝐿𝑈, i.e. 𝐿𝑅 = 𝐿𝑅 𝐿𝑈⁄ , should therefore provide a statistic about the validity or 
otherwise of the restrictions. 
 
In fact it is possible to show that: 
 

−2 log 𝐿𝑅~(𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦) 𝜒𝑘
2 

 

where 𝜒𝑘
2 denotes the chi-squared distribution with 𝑘 degrees of freedom. 

 
As 𝐿𝑅 ≤ 1 so −2 log 𝐿𝑅 ≥ 0. If the restrictions bind hard then the likelihood ratio will be small and 
−2 log 𝐿𝑅 will be large. So we can reject the restriction (at a confidence level of 𝛾) if −2 log 𝐿𝑅 >

𝜒𝑘
2(𝛾) where 𝜒𝑘

2(𝛾) is the 𝛾-quantile of the 𝜒𝑘
2 distribution. 

 
3.8 Binomial back-testing 
 
The likelihood ratio test is perhaps most easily applied to VaR back-testing by supposing that we 
observe a time-series sample of losses, 𝑥𝑡, over 𝑛 time periods and the corresponding 𝑉𝑎𝑅𝛼 estimates 
from a portfolio VaR model relating to the same 𝑛 time periods. From these we can create a variable 
𝑦𝑡 that indicates if the loss exceeded the VaR or not, i.e.: 
 

𝑦𝑡 = {
1   𝑖𝑓 𝑥𝑡 ≥ 𝑉𝑎𝑅𝛼
0   𝑖𝑓 𝑥𝑡 < 𝑉𝑎𝑅𝛼

 

 
If the model is correct then the 𝑦𝑡 should be a sample of independent binomial random variables 
taking the value 1 with probability 𝛼 and 0 with probability 1 − 𝛼. 
 

Suppose the true probability were 𝛼 then the likelihood of the sample is 𝐿 = 𝛼𝑗(1 − 𝛼)𝑛−𝑗 where 𝑗 is 
the number of observations where 𝑦𝑡 = 1. 
 

The maximum likelihood estimator is the value of 𝛼 that maximises log(𝛼𝑗(1 − 𝛼)𝑛−𝑗), i.e. has 

 

0 =
𝑑

𝑑𝛼
(𝑗 log𝛼 + (𝑛 − 𝑗) log(1 − 𝛼)) =

𝑗

𝛼
−
𝑛 − 𝑗

1 − 𝛼
   ⇒    𝛼𝑀𝐿 =

𝑗

𝑛
 

 
We may therefore test whether the VaR model appears to have predicted an appropriate number of 
losses over the 𝑛 time periods by considering the likelihood ratio between a restricted 𝐿𝑅 in which we 
restrict 𝛼 to some specified value 𝛼0 (in which case 𝐿𝑅 is constant irrespective of the data) and an 
unrestricted likelihood 𝐿𝑈 using the ML estimate for 𝛼. The likelihood ratio test would then be: 
 

𝐿𝑅 =
𝛼0
𝑗(1 − 𝛼0)

𝑛−𝑗

(
𝑗
𝑛)

𝑗

(1 −
𝑗
𝑛)

𝑛−𝑗
 

 
We would then reject the null hypothesis that 𝛼 = 𝛼0 (i.e. that the VaR model was appropriately 

specified) if −2 log 𝐿𝑅 > 𝜒1
2(𝛾) for some suitable confidence level 𝛾. 
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This test was proposed by Kupiec and is used by regulatory frameworks to assess the accuracy of VaR 
models used by large banks. It tests whether one can reject the null hypothesis that the data involves 
independent binomial random variables with probability of 𝛼0 of observing a VaR exception against 
the alternative of independent binomial random variables with a probability (𝑗 𝑛⁄ ) of observing an 
exception. 
 
3.9 Binomial back-testing with autocorrelation 
 
If the VaR model does not appear to be correct then the exceptions might not be independent. It 
therefore makes sense to test the model against a more general alternative. Following an approach 
suggested by Christensen, we might assume the possibility of first order autocorrelation by assuming 
that the probability of an exception occurring also depends on the probability that an exception 
occurred in the previous period. So we might assume: 
 

𝜋12 ≡ 𝑃𝑟(𝑦𝑡 = 1|𝑦𝑡−1 = 0) ≠ 𝑃𝑟(𝑦𝑡 = 1|𝑦𝑡−1 = 1) ≡ 𝜋22 
 
Suppose we have two states: (1) no exception and (2) exception. Suppose also that transitions 
between these states are generated by a Markov chain with transition matrix (where 𝜋𝑖𝑗 is the 

probability of moving from state 𝑖 to state 𝑗): 
 

Π = (
𝜋11 𝜋12
𝜋21 𝜋22

) 

 
The assumption of independence corresponds to the assumption that Π has the following form for 
some 𝜋: 
 

Π = (
1 − 𝜋 𝜋
1 − 𝜋 𝜋

) 

 
The maximum likelihood estimator for the unrestricted transition matrix is: 
 

Π𝑀𝐿 = (
𝜋̂11 𝜋̂12
𝜋̂21 𝜋̂22

) 

 

where 𝜋̂11 =
𝑛11

𝑛11+𝑛12
, 𝜋̂12 =

𝑛12

𝑛11+𝑛12
, 𝜋̂21 =

𝑛21

𝑛21+𝑛22
, 𝜋̂22 =

𝑛22

𝑛21+𝑛22
 and 𝑛𝑖𝑗 is the number of 

observations in state 𝑖 one period and state 𝑗 the following period. 
 
Suppose we now calculate: 
 

𝐿3 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 = (1 − 𝜋̂)
𝑛11+𝑛21𝜋̂𝑛12+𝑛22 

𝐿4 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝜋̂11
𝑛11𝜋̂12

𝑛12𝜋̂21
𝑛21𝜋̂22

𝑛22 
 
We can test for independence using the following likelihood ratio, which under the null hypothesis is 
distributed as chi-squared with 1 degree of freedom: 
 

𝐿𝑅𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 = −2 log(𝐿3 𝐿4⁄ ) 

 
We can also jointly test for independence and accuracy of the VaR model using a likelihood ratio akin 
to the likelihood formulae referred to previously. 
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4. Portfolio credit risk models 
 
4.1 Introduction 
 
There are three main types of model commonly used to assess portfolio credit risk. These are: 
 
(a) Ratings-based models such as Riskmetric’s Creditmetrics™ or Standard and Poor’s Portfolio 

Risk Tracker™ 
 
(b) Equity-based models such as Moody’s-KMV Portfolio Manager™ 
 
(c) Actuarial or so-called mixture models such as CSFB’s CreditRisk+™. 
 
The main aim of these models is to provide statistics relating to the portfolio value distribution (e.g. 
VaR) at some future date 𝑇 given information at some initial date 𝑡. Each typically has two key 
components: 
 
(i) A model for the stochastic evolution of credit quality between 𝑡 and 𝑇; and 
 
(ii) A model for valuing the credit exposures at the future date 𝑇 conditional on their credit quality 

at that time. 
 
4.2 Modelling the non-credit sensitive component of bonds 
 
Portfolio credit risk models in general need to capture risks that are not credit related. In particular, 
they in general need to capture overall market interest rate risks, if these have not been fully hedged 
and if the instruments involved do express such risks (as is the case with bonds although largely not 
the case with credit default swaps). The evolution of the price of a credit risk-free bond will depend 
on the evolution of the relevant yield curve through time. These evolutions are often modelled in a 
manner conceptually akin to the non-linear claims covered in section 3, by formulating some ‘factors’ 
that are assumed to drive the behaviour of different bonds. In particular, we might determine factors 
that we think characterise how yields might move and then work out the sensitivity of bond prices to 
these factors. 
 
It is relatively common to use a three-factor model when modelling overall market interest rate risks. 
The three factors then typically involve (1) a ‘shift’ involving the same yield move up or down across 
the entire yield curve, (2) a ‘twist’ to the yield curve (with the short end moving up and the long end 
down or vice versa) and (3) a ‘butterfly’ factor in which the two ends move the same way but each 
move in the opposite way to the middle of the yield curve. Whilst the same three factor structure may 
be used for each currency, the relevant factors for different currencies will not normally be assumed 
to be perfectly correlated, as yield curves in different currencies evolve differently through time. The 
reference market yield curves will often be associated with relevant government debt yield curves 
although strictly speaking this requires the assumption that such debt is itself credit risk free. 
 
It is possible to apply similar types of factor model to the credit sensitive components of instrument 
values or to refine the three types of portfolio credit risk model referred to above in such a manner. 
This might perhaps be done if there appears to be a noticeable term structure to the credit spread of 
a specific issuer. We can think of this as involving refining the components in section 4.1(i) and (ii) so 
that credit quality is in part associated with a credit spread term structure (that might be instrument 
as well as name specific). More normally with portfolio credit risk modelling we adopt the simplifying 
assumption that the same credit quality applies to all instruments issued by the same name. In the 
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case of ratings-based models we also assume that credit quality is well characterised by the rating 
ascribed to the issuer by a credit ratings agency. 
 
It is relatively common when analysing interest rate risk to calculate metrics for individual bonds such 
as the bond’s duration. If a bond gives rise to cash flows 𝑐𝑡 at time 𝑡 then its (dirty) price, if its gross 
redemption yield (expressed annually) is 𝑖, is: 
 

𝑉 =∑
𝐶𝑡

(1 + 𝑖)𝑡
𝑡

 

 
Its duration and its modified (i.e. Macaulay) duration are then: 
 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝑉
∑

𝑡𝐶𝑡
(1 + 𝑖)𝑡

𝑡

       𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝑉

𝑑𝑉

𝑑𝑖
=
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

1 + 𝑖
 

 
A credit risk free bond’s modified duration is closely allied to its DV01 (otherwise called PV01), i.e. the 
(dollar) value change for a 1 basis point change in its yield, or more precisely its interest rate DV01 or 
IRDV01. 
 
For instruments that are credit sensitive life is more complicated. This is because some instruments 
like CDS have relatively little overall interest rate DV01 or duration (because their price is not sensitive 
to overall movements in, say, government bond yield curves). However, they may have much greater 
sensitivity to changes in credit spreads relative to such yield curves, which we might capture via a 
corresponding credit DV01 or CRDV01. 
 
4.3 Ratings-based portfolio credit risk models 
 
A ratings-based model typically assumes that there is a portfolio of 𝑛 credit sensitive exposures. Each 
is assumed to have a credit rating and these ratings are assumed to evolve according to a Markov 
chain defining the probability of moving from rating 𝑖 to rating 𝑗 over a given period (say a year) as, 
say, 𝜋𝑖𝑗. We might for example have 𝐾 states with the 𝐾’th state involving default, so 𝜋𝑖𝐾 is the one-

period likelihood of default for an 𝑖-rated exposure. Estimates of 𝜋𝑖𝑗 might be obtained from historical 

data on ratings transitions as prepared by a credit ratings agency. We generally assume that default is 
an absorbing state, i.e. once an exposure has defaulted it never reemerges from the default state (or 
if it can do the portfolio would no longer have any exposure in the outcome). 
 
The model then identifies some method of valuing the exposure at the horizon of the risk calculation. 
As explained in section 4.2, the component of value that is not credit sensitive (e.g. exposure to 
general interest rates) would be valued using standard bond pricing approaches and the risk 
characteristics probably modelled as above, usually via some sort of factor modelling process. So a 
key additional component needed by a ratings-based model is some way of valuing the credit sensitive 
component. 
 
If we assume that changes in credit quality and interest rates are independent then a promise by an 
obligor (that is 𝑟-rated and not defaulted at time 𝑡) to pay a stream of 𝑚 cash flows 𝑐𝑖 at times 𝑡𝑖 > 𝑡 
may be priced at time 𝑡 as: 
 

𝑉𝑡
(𝑟)
=∑𝑐𝑖𝑃𝑡,𝑡𝑖 exp (−𝑠𝑡,𝑡𝑖

(𝑟)(𝑡𝑖 − 𝑡))

𝑚

𝑖=1
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where 𝑃𝑡,𝑢 is the price at 𝑡 of a default-free zero coupon bond paying 1 for sure at time 𝑢 ≥ 𝑡 and 𝑠𝑡,𝑢
(𝑟)

 

is the credit spread at 𝑡 for a payment at time 𝑢 from an 𝑟-rated obligor. We are here assuming that 
the credit spread is quoted in a geometric manner with continuous compounding. 
 
The 𝑃𝑡,𝑢 correspond to the part of the bond value that is not credit sensitive, and is handled as above 
(or is assumed to be constant, but this is only sound if we assume that interest rate risk has been 

hedged). Quite commonly ratings-based credit risk models assume that 𝑠𝑡,𝑢
(𝑟)

 are also known ex ante 

but again this is only sound if spread risk has in aggregate been hedged. If this is not the case then 
strong assumptions are needed for such an approach to be valid, e.g. that spreads on defaultable debt 
of a given rating are constant. 
 
We also need to identify the prices of claims in the case of default. Commonly, it is assumed that the 
value of the claims is then equal to a random fraction, 𝛾, of either (i) the par value for the claim or (ii) 
the value of a default free security with the same contractual cash flows. 𝛾 is known as the recovery 
rate. Alternatively, a simpler approach may be adopted in which 𝛾 is set to a constant, e.g. 40%. If 𝛾 is 
random then it might be assumed to be an independent draw from a beta distribution. If alternative 
(ii) is adopted then the value in the defaulted state is: 
 

𝑉𝑡
(𝐾) =∑𝑐𝑖𝑃𝑡,𝑡𝑖𝛾

𝑚

𝑖=1

 

 
By compounding up the transition matrix to the relevant time horizon we may calculate the likelihood 
that an instrument from an obligor currently 𝑟-rated is 𝑗-rated at the relevant time horizon, 𝑇. Given 
the values at time 𝑇 conditional on different possible future ratings we can work out the univariate 
distributions of the (future) values of each exposure. 
 
To identify the distribution for the overall portfolio value we also need to allow for correlations (or 
more generally co-dependencies) between ratings changes for the different exposures. Commonly we 
assume that for the 𝑘’th exposure there is a latent (i.e. not directly observable random variable) 𝑅𝑘 
that drives its ratings transitions over a given period. Without loss of generality we can standardise 
the 𝑅𝑘 so that their (marginal) distributions are unit Normal and we assume that if the rating at time 

0 is 𝑖 then the rating at the end of period 1 is 𝑗 if 𝑅𝑘 lies in the interval (𝑍𝑖,𝑗−1, 𝑍𝑖,𝑗) where the 𝑍𝑖,𝑗 are 

chosen to be consistent with 𝜋𝑖𝑗. This requires (where 𝑁(𝑥) is the unit normal cdf, 𝑍𝑖,𝐾 = +∞ and 

𝑍𝑖,0 = −∞): 

 

𝜋𝑖,𝑗 = 𝑁(𝑍𝑖,𝑗) − 𝑁(𝑍𝑖,𝑗−1) 

 
Solving these equations recursively we have: 
 

𝑍𝑖,𝑗 = 𝑁
−1(𝜋𝑖,1 + 𝜋𝑖,2 +⋯+ 𝜋𝑖,𝑗)        (1 ≤ 𝑗 ≤ 𝐾 − 1) 

 
This type of approach to ratings transitions is called an ordered probit model and is relatively 
commonly used in discrete choice econometric analysis. Its main advantage here is that we can now 
make some relatively simple assumptions about correlations (or more generally, co-dependencies) of 
credit rating evolutions of different obligors by incorporating assumptions about the behaviour of the 
latent variables. 
 
Commonly we assume that the latent variables are jointly Gaussian distributed (i.e. multivariate 
normal). We are then left with choosing the correlations within the relevant correlation matrix. Often 
these are derived from the correlations of the equity returns of the individual obligors in question. 
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Alternatively, and especially for obligors that do not have equity issues, we might use a weighted 
average of industry and country indices corresponding to the obligor in question, together with an 
idiosyncratic term, c.f. traditional market risk models. This approach is particularly simple when there 
is a single index or factor which is the same for all obligors, plus an idiosyncratic term. We may then 
express the (log) return of the 𝑛’th firm’s equity as: 
 

𝑟𝑛 = 𝛼𝑛𝑓 + 𝜀𝑛√1− 𝛼𝑛
2 

 
where 𝑓 and 𝜀𝑛 correspond to the return on the market and the obligor idiosyncratic return 
component and are assumed to be independent unit normal random variables. 
 
4.4 Equity-based portfolio credit risk models 
 
For the ratings-based credit risk model to have theoretical validity we need the rating ascribed by a 
ratings agency to a particular obligor to provide meaningful information about the likely future 
evolution of the credit spread and default probability applicable to that obligor. If we are not confident 
that credit ratings are sufficiently reliable for this purpose then we will need to think of alternative 
ways of modelling credit risk exposures. 
 
Perhaps the most common alternative is an equity-based portfolio credit risk model. This type of 
model relies on the underlying observation that, under limited liability, the value of a firm’s equity 
may be seen as a type of call option written on the firm’s underlying assets with the strike price being 
its liabilities whilst the (market) value of the firm’s debt can be viewed as another derivative 
dependent on these two inputs since both equity and debt form parts of the same overall firm capital 
structure. For example, the seminal works on option pricing by Black and Scholes (1973) and Merton 
(1974) both stressed the potential application of derivative pricing to modelling corporate debt. 
 
Suppose a firm issues bonds (without intermediate coupons) that pay 𝐷 at time 𝑇 and that the value 
of the firm’s assets (under pure equity financing) follows a process 𝑉𝑡. Then the payoff to bond-holders 
and equity holders are: 
 

𝐵𝑜𝑛𝑑 𝑝𝑎𝑦𝑜𝑓𝑓 = max(0,min(𝐷, 𝑉)) 
𝐸𝑞𝑢𝑖𝑡𝑦 𝑝𝑎𝑦𝑜𝑓𝑓 = max(𝑉 − 𝐷, 0) 

 
Pricing these claims is in principle straightforward if we make appropriate assumptions about the 
process for 𝑉𝑡. For example, we might merely assume that it follows a geometric Brownian motion as 
per Black-Scholes: 
 

𝑑𝑉𝑡 = 𝜇𝑉𝑡 + 𝜎𝑉𝑡𝑑𝐵𝑡 
 
A more plausible model might involve the following features: 
 
(a) There might be coupon payments on the 𝐷 so that it follows a process 𝐷𝑡 and some 

dependency with overall market movements which are assumed to follow a process 𝑀𝑡. There 
might also be dividend flows to equity holders, so we might have for the 𝑖’th firm (where the 
𝜇𝑉 , 𝜌 etc. might depend on 𝑖): 

 
𝑑𝑉𝑡 = 𝜇𝑉𝑉𝑡𝑑𝑡 + 𝜎𝑉𝑉𝑡𝑑𝑊𝑉,𝑡 

𝑑𝐷𝑡 = 𝜇𝐷𝐷𝑡𝑑𝑡 
𝑑𝑀𝑡 = 𝜇𝑀𝑀𝑡𝑑𝑡 + 𝜎𝑀𝑀𝑡𝑑𝑊𝑀,𝑡 
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𝑑𝑊𝑉,𝑡𝑑𝑊𝑀,𝑡 = 𝜌𝑑𝑡 

 
(b) We might also assume that insolvency occurs when the ratio of assets to liabilities 𝑘𝑡 ≡ 𝑉𝑡 𝐷𝑡⁄  

falls below an exogenously defined trigger level, 𝑘∗, and that if this does occur then equity-
holders receive nothing (i.e. there is an instantaneous decline to zero in any remaining value 
of the firm). 

 
We can then value the equity using barrier option pricing techniques. 
 
In principle, we could extend such models to price the debt too. However, it is often more convenient 
to think of the firm’s assets and liabilities as determining the default probability and to value the debt 
issue as if it is small compared to the firm’s broader balance sheet. The survival probabilities would 
then be derived from the probability that 𝑘𝑡 has not yet hit 𝑘∗ as above by time 𝑇 (or earlier maturity 
of the debt). 
 
Implementation of an equity-based portfolio credit risk model thus requires the following: 
 
(1) We need to estimate the processes driving the 𝑘𝑡 for each exposure, as well as their 

correlations. 
 
(2) We need to determine the cut-off points 𝑘∗ for each exposure. 
 
(3) Having estimated the various parameters we then need to simulate a vector of correlated 𝑘𝑡 

up to the horizon and value the debt conditional on the levels that the 𝑘𝑡 has reached. 
 
(4) We need to sum across all exposures to obtain the portfolio value 
 
(5) We need to repeat such a simulation many times to build up an estimate of the overall 

probability distribution and hence portfolio statistics such as VaR. 
 
In principle we could use, say, ‘pure’ ML estimates to estimate each of the parameters on which the 
above depends. However, as pricing depends on the correlation, 𝜌, this means that we would need to 
estimate a joint model for changes in each 𝑘𝑡 with 𝑀𝑡 (and if we believe that there are multiple market 
factors driving different obligor evolution then there will be several 𝑀𝑡 to consider, as with traditional 
market risk models). Moreover, the underlying likelihood expression is very complicated. 
 
In practice, therefore, commercial approaches tend to be much less ‘pure’. For example, we might 
invert observed equity-liability ratios to obtain time series of the presumed 𝑘𝑡 for each firm and then 
estimate the correlation matrix of the Brownian motions driving different firms’ underlying asset 
processes. In practice it is also common to adjust how 𝑘∗ are derived from, say, the combination of 
short and long term debt from published accounts so that the simulations more closely replicate 
historically observed default rates. 
 
4.5 Actuarial (or so-called mixture) portfolio credit risk models 
 
These types of model focus principally on losses associated with defaults rather than on losses that 
occur when credit standing deteriorates without default (i.e. they focus on default risk rather than 
credit spread risk per se). They are often developed using probability generating functions, see e.g. 
here. 
 

http://www.nematrian.com/ActuarialMixtureModels.aspx
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Conceptually similar sorts of techniques can also be used to analyse 𝑛’th to default credit default 
swaps and other basket credit derivatives but these are beyond the scope of this note. These can be 
formulated as continuous time models (although often then solved numerically after discretising the 
timeline) in which case the probability of default per unit time is called the default intensity. 
 
4.6 Analytical results in the ‘fine grained’ limit 
 
Ratings-based models employed in practical applications are generally solved using Monte Carlo 
techniques. However, for some purposes it is helpful to solve special cases analytically. An important 
example which has been widely applied by regulators and others involves unpublished work by 
Vasicek (1991). 
 
In the Vasicek approach we assume that a given obligor defaults when a latent variable falls below a 
threshold. We also assume that there is a single common risk factor, so conditional on this defaults 
are independent Bernoulli random variables and the number of defaults is thus binomial, so we can 
identify probabilities of 𝑘 defaults out of a set of 𝑛 obligors. The key further step is to note that as the 
number of obligors goes to infinity (i.e. as the portfolio becomes better and better diversified) the 
randomness associated with idiosyncratic risk disappears because of the law of large numbers. The 
loss distribution then converges to a simple analytical form. 
 
The derivation is as follows. Suppose the 𝑖’th obligor defaults over a given time period if a latent 
variable 𝑍𝑖  falls below a cut-off point −𝑐. Suppose that exposures are either in default or not. Assume 
that the 𝑍𝑖  satisfy a factor structure: 
 

𝑍𝑖 = √𝜌𝑋 + √1 − 𝜌𝜀𝑖 

 
where the 𝑋 and 𝜀𝑖  are independent standard normals. Default then occurs when  
 

√𝜌𝑋 +√1 − 𝜌𝜀𝑖 < −𝑐 

 
As 𝑍𝑖~𝑁(0,1) we have default probability 𝑞 = 𝑁(−𝑐) where 𝑁(𝑥) is the unit normal cdf. 
 
Conditional on the common factor 𝑋 defaults are independent across individual obligors. The 
probability of observing 𝑘 defaults out of 𝑛 obligors is 𝑃(𝑘, 𝑛) is where: 
 

𝑃(𝑘, 𝑛) = (
𝑛
𝑘
) ∫ (𝑁(

−𝑐 − √𝜌𝑥

√1 − 𝜌
))

𝑘

(1 −𝑁(
−𝑐 − √𝜌𝑥

√1 − 𝜌
))

𝑛−𝑘

𝑑𝑁(𝑥)

∞

−∞

 

 
Adopting the change of variables: 
 

𝑠(𝑥) = 𝑁(
−𝑐 − √𝜌𝑥

√1 − 𝜌
) 

 
we have: 
 

𝑃(𝑘, 𝑛) = −(
𝑛
𝑘
) ∫ 𝑠𝑘(1 − 𝑠)𝑛−𝑘𝑑𝑁(−

√1 − 𝜌𝑁−1(𝑠) + 𝑐

√𝜌
)

∞

−∞
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But −𝑑𝑁(𝑓(𝑠)) = 𝑑𝑁(−𝑓(𝑠)) so: 

 

𝑃(𝑘, 𝑛) = −(
𝑛
𝑘
) ∫ 𝑠𝑘(1 − 𝑠)𝑛−𝑘𝑑𝑊(𝑠)

∞

−∞

 

 
where: 
 

𝑊(𝑠) ≡  𝑁 (
√1 − 𝜌𝑁−1(𝑠) − 𝑁−1(𝑞)

√𝜌
) 

 
Consider now what happens as 𝑛 → ∞. Let 𝜃 be the fraction of the pool of obligors that defaults. Then: 
 

lim
𝑛→∞

∑ 𝑃(𝑘, 𝑛)

𝑖𝑛𝑡(𝑛𝜃)

𝑘=1

= ∫( lim
𝑛→∞

∑ (
𝑛
𝑘
)𝑠𝑘(1 − 𝑠)𝑛−𝑘

𝑖𝑛𝑡(𝑛𝜃)

𝑘=1

)𝑑𝑊(𝑠)

1

0

 

= ∫𝐼𝑠<𝜃𝑑𝑊(𝑠)

1

0

= 𝑊(𝜃) −𝑊(0) = 𝑊(𝜃) 

 
where 𝐼𝑠<𝜃 is the indicator variable that takes the value 1 if 𝑠 < 𝜃 and 0 otherwise. 
 
Hence the loss distribution in this ‘fine grained’ limit is: 
 

𝑊(𝜃𝑡) = 𝑁 (
√1 − 𝜌𝑁−1(𝜃𝑡) − 𝑁

−1(𝑞)

√𝜌
) 

 

This also means that the transformed loss rate 𝜃̃𝑡 = 𝑁
−1(𝜃𝑡) is Gaussian and satisfies: 

 

 𝜃̃𝑡 ≡ 𝑁
−1(𝜃𝑡)~𝑁(

1

√1 − 𝜌
𝑁−1(𝑞),

𝜌

1 − 𝜌
) 

 

5. Modelling operational risk 
 
5.1 Introduction 
 
Operational risk is difficult to define precisely but for a financial firm is often taken to be all risks faced 
by a firm other than market and credit risks. Much of the focus of operational risk management is on 
implementing effective controls and other incentives that minimise (in a cost-effective way) the 
likelihood of an operational risk occurring, because operational risks often provide little or no upside 
compared to their potential downside. We introduce a simple mathematical model of fraud in a 
hierarchy which provides insights into what characteristics we might expect an effective operational 
risk mitigation approach to exhibit. We also briefly consider more mathematical ways in which 
operational risks can be measured and therefore, we hope, managed more effectively. 
 
5.2 A simple model of fraud in a hierarchy 
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We may think of a business as involving a chain of command, with more senior staff reviewing work 
undertaken by more junior staff. Most or all businesses are exposed to fraud risk so it is desirable to 
understand at a very high level what might encourage or discourage fraud. 
 
Suppose in a hypothetical firm we have an infinite chain of individuals with no start and end, 
represented by a chain −∞,… , 𝑥 − 1, 𝑥, 𝑥 + 1,… ,+∞. We index the chain so that any individual in 
the chain, say 𝑥, has an immediate superior (𝑥 − 1) and an immediate subordinate (𝑥 + 1). An 
individual chooses either to exert effort in monitoring his subordinate(s), or if he does not monitor, 
he chooses whether to defraud the firm himself (we assume for simplicity that an individual is unlikely 
to monitor his subordinate if he himself is committing fraud, e.g. because it might attract additional 
scrutiny). 
 
Let 𝐹 be the utility gain of fraud, 𝐶 be the cost of being caught or associated with fraud, 𝐺 be the utility 
gain from detecting fraud and 𝑀 be the cost of monitoring. 𝐹, 𝐶, 𝐺 and 𝑀 are exogenous parameters, 
i.e. presumed fixed externally (and to be constant throughout the chain). We will also assume that 𝐹, 
𝐶, 𝐺 and 𝑀 are all positive. We suppose that individuals who have not monitored are only held 
responsible for frauds by their immediate subordinates, so an individual only needs to worry about 
being monitored by his immediate superior or about monitoring his immediate subordinate. 
 
Let 𝑓 be the likelihood that any individual commits fraud. Let 𝑚 be the probability (conditional on not 
committing fraud) that any individual monitors. 𝑓 and 𝑚 are endogenous parameters. To solve the 
problem, we will need to derive the probability, 𝑝𝑓, that an individual commits an undetected fraud 

and the probability, 𝑝𝑚, that the individual will uncover a fraud. 
 
There are two possible types of equilibrium that the arrangement can exhibit (if individuals behave 
rationally), see here. In a ‘corner’ equilibrium all individuals commit fraud and no-one monitors. In an 
‘interior’ equilibrium each individual commits fraud and monitors with some non-zero probability (the 
same for all individuals in this simplified model), so fraud occurs intermittently at any given point in 
the hierarchy, the equilibrium involving: 
 

𝑓 =
𝑀

𝐺
         𝑚 = (

𝐹

𝐹 + 𝐶
)(

𝐺

𝐺 −𝑀
) 

 
Assuming the interior solution applies we may conclude that to reduce likelihood of fraud we should: 
 
- Increase 𝐺, e.g. by raising the payoff to whistleblowers and/or 
- Reduce 𝑀, i.e. the cost of monitoring 
 
The important lesson here is that reducing fraud (and more generally other types of operational risk) 
is facilitated by effective and relatively cheap monitoring. This perhaps explains why so much of 
operational risk management seems to concentrate on implementation of effective processes and 
systems for monitoring operational risk events and exposures. Four components of a typical system 
seen in a financial firm as described by Chapelle are: 
 
- Incident reporting 
- Dashboards 
- Key risk indicators 
- Risk and control self-assessment 
 
5.3 Statistical modelling of operational risk 
 

http://www.nematrian.com/FraudHierarchyModel.aspx
http://www.nematrian.com/References.aspx?Ref=ChapelleEtAl2004
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We can view operational risk as risks that disrupt the smooth running of operational processes present 
within the organisation in question. This is a potentially useful starting point because there is a very 
extensive body of operations research literature that has already been applied to manufacturing 
processes across many different industrial sectors. The typical approach is therefore to think of the 
firm (or just a specific process within the firm) as akin to a machine with a set of components, each 
potentially subject to failure. We might then model time or duration until failure, 𝜏, by supposing that 
it has a distribution 𝐹 with density 𝑓. Certain ways of viewing the distributional form then take on 
additional appeal, including use of the ‘hazard’ of a distribution, i.e.: 
 

ℎ(𝜏) ≡
𝑓(𝜏)

1 − 𝐹(𝜏)
 

 
By suitable choice of 𝐹(𝜏) we can, say, arrange for the hazard rate to fall (or rise) as 𝜏 increases 
depending on our intuition regarding the way in which the incidence of the risk might change through 
time. 
 
If we have 𝑁 machines whose failures are independent then we can simulate number of failures out 
of the 𝑁 machines by time 𝑇 by evaluating 𝜏𝑖 = 𝐹

−1(𝑢𝑖) where the 𝑢𝑖 are independent random draws 
from a uniform distribution. To allow for correlation between machines / machine components we 
might assume that the 𝐹(𝜏) depend on a common stochastic factor, say 𝜌. We would then need to 
evaluate 𝜏𝑖 = 𝐹

−1(𝑢𝑖|𝜌). Many approaches used in credit risk modelling can also be adapted to 
operational risk, because they involve a specific type of hazard rate, i.e. the default rate. 
 
One important potential differentiator between credit risk and operational risk is that with credit risk 
modelling we usually know the number and magnitude of our exposures. The main focus is therefore 
on how many of a known number of these exposures might default and if so how much we might lose. 
In contrast, with operational risk it is less clear how large is the number of our exposures or their 
potential maximum magnitude. Usually it is desirable to split the overall loss into frequency and 
magnitude components. If both can be reliably estimated then this should reduce the variance of the 
overall forecasted loss. In particular, we might expect frequency of operational losses to have some 
reasonable correlation with business volumes if defined sufficiently widely. Moreover, better 
understanding (and hence potentially better monitoring) of the risks, which subdivision between 
frequency and severity should provide, should also help us manage the risks better, see previous 
section. 
 
Another source of inspiration for mathematical analysis is the set of mathematical tools used in 
general (i.e. non-life) insurance, since many of the operational risks a firm faces have similarities with 
the risks that a non-life insurer might insure. 
 

6. Copulas 
 
6.1 Introduction 
 
If random variables are multivariate normal with zero means then their co-dependency, i.e. the way 
in which they move in tandem, is entirely specified by their covariance matrix or equivalently by their 
individual (marginal) standard deviations and their correlation matrix. However, this can be a 
restrictive assumption and, as we shall see below, requires us to have a particular view about how 
likely it might be for two or more of the random variables each to take extreme values. 
 
It is therefore important in some circumstances to have methodologies that cater for more general 
types of co-dependency. The most important and general of these methodologies involves copulas. 
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6.2 Definition 
 
A copula is a multivariate cumulative distribution function for an 𝑛 dimensional random vector 𝑈 =
(𝑈1, … , 𝑈𝑛)

𝑇 in the unit hypercube ([0,1]𝑛) that has uniform marginals, 𝑈𝑖, each distributed according 
to 𝑈(0,1) but not in general independent of each other. Let 𝑢 = (𝑢1, … , 𝑢𝑛)

𝑇 also be restricted to the 
unit hypercube [0,1]𝑛. Then a copula is defined as a function of the form: 
 

𝐶(𝑢) = 𝐶(𝑢1, … , 𝑢𝑛) = 𝑃𝑟(𝑈1 ≤ 𝑢1, … , 𝑈𝑛 ≤ 𝑢𝑛) 
 
Equivalently 𝐶(𝑢1, … , 𝑢𝑛) is the joint cumulative distribution function for the random vector 𝑈 ∈
[0,1]𝑛. 
 
The copula density (for a continuous copula) is the pdf for which the cdf is the copula. 
 
6.3 Properties 
 
In the bivariate case (𝑛 = 2) for a general function 𝐶(𝑢1, 𝑢2) to be a copula it must satisfy the following 
properties: 
 
1. 𝐶(𝑢, 1) = 𝑢 = 𝐶(1, 𝑢) for all 0 ≤ 𝑢 ≤ 1 
2. 𝐶(𝑢1, 𝑢2) must be increasing in both 𝑢1 and 𝑢2 
3. 𝐶(𝑏1, 𝑏2) − 𝐶(𝑎1, 𝑏2) − 𝐶(𝑏1, 𝑎2) + 𝐶(𝑎1, 𝑎2) ≥ 0 for all 0 ≤ 𝑎1 < 𝑏1 ≤ 1 and 0 ≤ 𝑎2 <
𝑏2 ≤ 1 
4. 𝐶(𝑢1, 𝑢2) ≤ min(𝑢1, 𝑢2) 
5. 𝐶(𝑢1, 𝑢2) ≥ max(𝑢1 + 𝑢2 − 1,0) 
 
There are equivalent generalisations when the copula relates to more than two random variables. 
 
6.4 Sklar’s theorem 
 
A key feature of any copula is that in combination with the marginals it provides a complete 
characterisation of the joint probability distribution. This follows from Sklar’s theorem 
 
Theorem (Sklar’s theorem). If 𝐹 is a joint (cumulative) distribution with marginal cdf’s 𝐹1, 𝐹2, … , 𝐹𝑛 
then there exists a copula 𝐶 which maps the unit hypercube [0,1]𝑛 onto the interval [0,1] such that for 
all 𝑥1, … , 𝑥𝑛 we have: 
 

𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)) 

 
Moreover, if the 𝐹𝑖 are continuous functions then the copula is unique and 
 

𝐶(𝑢1, … , 𝑢𝑛) = 𝐹(𝐹1
−1(𝑢1),… , 𝐹𝑛

−1(𝑢𝑛)) 

 
Conversely, suppose 𝐶(𝑢1, … , 𝑢𝑛) is a copula and 𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛) are univariate cdf’s. Then the 

function 𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)) is a joint distribution function with marginal cdf’s 

𝐹1, 𝐹2, … , 𝐹𝑛. 
 
6.5 Example copulas 
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Random variables with continuous marginals are independent if and only if their copula is the 
Independence or Product copula, i.e. 
 

𝐶(𝑢1, … , 𝑢𝑛) =∏𝑢𝑖

𝑛

𝑖=1

 

 
A Gaussian copula is one that corresponds to the cumulative distribution function of a multivariate 
normal (i.e. Gaussian) distribution and is specified by the correlation matrix of the corresponding 
multivariate normal distribution. All multivariate normal distributions with the same correlation 
matrix have the same copula as the means and marginal standard deviations drive the marginal 
distributions rather than the copula. The independence copula is a special case of the Gaussian copula 
with the correlation matrix being the identity matrix. 
 
The Archimedean family involves copulas of the following form, where 𝜑: [0,1] → [0,∞), 𝜑(0) = ∞, 

𝜑(1) = 0, 𝜑 is continuous and strictly decreasing and (−1)𝑘 𝑑𝑘𝜑−1(𝑡) 𝑑𝑡𝑘⁄ ≥ 0   ∀𝑘 = 0,1,… 
 

𝐶(𝑢1, … , 𝑢𝑛) = 𝜑
−1(𝜑(𝑢1) + ⋯+𝜑(𝑢𝑛)) 

 

Special cases include the Clayton copula which has 𝜑(𝑡) = 𝑡−𝜃 − 1 (for some suitable value of 𝜃) and 
the independence or product copula which has 𝜑(𝑡) = − log 𝑡. 
 
Exchangeable copulas are ones where we can permute the 𝑢1, … , 𝑢𝑛 without altering the form of the 
copula. The Archimdean family are exchangeable. So is the bivariate Gaussian copula (since the 
correlation between 𝑥1 and 𝑥2 if (𝑥1, 𝑥2) is bivariate normally distributed is the same as the 
correlation between 𝑥2 and 𝑥1). However, in general the multivariate normal distribution for 𝑛 > 2 is 
not exchangeable. The correlation between 𝑥1 and 𝑥3 is not necessarily the same as the correlation 
𝑥2 and 𝑥3 or the correlation between 𝑥1 and 𝑥2 for a trivariate normal distribution. 
 
Exchangeability in effect corresponds to a one factor model for random variables that are multivariate 
normally distributed. A set of random variables with unit variance is said to possess a factor structure 
if their (symmetric non-negative definite) correlation matrix, 𝑉, is of the form: 
 

𝑉 = 𝐴𝐴𝑇 + 𝐵 
 
where 𝑉 is an 𝑚 ×𝑚 matrix, 𝐴 is an 𝑚 × 𝑘 matrix and 𝐵 is a diagonal matrix. If the model is 

exchangeable then 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖, 𝑥𝑗) = 𝜌 for all 𝑖 ≠ 𝑗. The 𝜌 also clearly needs to be in the range 

[0,1]. Setting: 
 

𝐴 = (
√𝜌

⋮

√𝜌

)               𝐵 = (
1 − 𝜌 ⋯ 1 − 𝜌
⋮ ⋱ ⋮

1 − 𝜌 ⋯ 1 − 𝜌
) 

 
we obtain a factor structure with a single factor, so exchangeability implies a one-factor factor 
structure. 
 
6.6 Tail dependence 
 
Perhaps the most important reason in practice why use of copulas might be preferred over, say, 
merely using traditional multivariate distributions such as the Gaussian distribution is because it 
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allows us a richer range of models about how likely might be joint extreme events. This is generally 
introduced by reference to tail dependency. 
 
If 𝑋1 and 𝑋2 are continuous random variables with copula 𝐶(𝑢1, 𝑢2) then their coefficient of (joint 
lower) tail dependence (if it exists) is: 
 

𝜆 ≡ lim
𝑢→0

𝐶(𝑢, 𝑢)

𝑢
 

 
For continuous random variables 𝑋 and 𝑌 each with lower limit of −∞ the coefficient of (lower) tail 
dependence is also: 
 

𝜆 = lim
𝑧→−∞

𝑃𝑟(𝑌 < 𝑧|𝑋 < 𝑧) = lim
𝑧→−∞

𝑃𝑟(𝑌 < 𝑧, 𝑋 < 𝑧)

𝑃𝑟(𝑋 < 𝑧)
 

 
For multivariate normally distributed random variables 𝜆 = 0 (unless the random variables are 
perfectly correlated in which case 𝜆 = 1 in the relevant joint directions). This is problematic if we are 
particularly concerned about the impact of joint extreme and e.g. believe that in extreme 
circumstances “all correlations might go to unity”. Other, more general copulas allow a wider range 
of 𝜆. 
 
Please bear in mind the inherent uncertainty involved in the extrapolation involved in deriving 
coefficients of tail dependency (which mirror similar uncertainties arising with Extreme Value Theory, 
see next section of this Appendix). For example, 𝜆 may not exist. It may also differ according to the 

(joint) direction of the tail so e.g. the (joint) upper tail dependence lim
𝑢→0

1−𝐶(1−𝑢,1−𝑢)

𝑢
 may differ from 

the (joint) lower tail dependence lim
𝑢→0

𝐶(𝑢,𝑢)

𝑢
 and these two may both also differ from the tail 

dependences where 𝑢1 and 𝑢2 go to opposite extremes.  
 
6.7 Simulating copulas 
 
Correlated Gaussian (i.e. multivariate normal) random variables (i.e. random variables with a Gaussian 
copula and Gaussian marginals) can be generated using Cholesky decomposition. 
 
For random variables that have a Gaussian copula but non-normal marginal (with cdfs 𝐹1, … , 𝐹𝑛) we 
can generate a vector (𝑥1, … , 𝑥𝑛)

𝑇 of correlated Gaussian random variables as above and then 

transform as per 𝑦𝑖 = 𝐹𝑖
−1(𝑥𝑖). 

 
In general, for non-Gaussian copulas we may need to generate a vector of unit uniform random 
variables (𝑢1, … , 𝑢𝑛)

𝑇 and then transform them using 𝑢1
∗ = 𝑢1, 𝑢2

∗ = 𝐶−1(𝑢2|𝑢1) etc. 
 
6.8 Combining risk exposures using tail dependence 
 
A natural potential use of copulas is to combine risk amounts for different risk types. If we were not 
using copulas then the aggregation would typically involve application of a correlation matrix (which 
technically involves use of a Gaussian copula), e.g. if the capital required to support the 𝑖’th risk is 𝑠𝑖  

then the total capital required to support all the risk combined is deemed to be 𝑠 = √∑ ∑ 𝑠𝑖𝑐𝑖𝑗𝑠𝑗𝑗𝑖  

where the 𝑐𝑖𝑗  are the assumed correlations between risks. The special case where 𝑐𝑖𝑗 = 1  ∀𝑖, 𝑗 

involves the total capital requirement being merely the sum of the individual capital requirements 
(and hence ignores any diversification benefits). 
 

http://www.nematrian.com/MnCholeskyDecomposition.aspx
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When combining risk capital amounts using copulas it is important to realise that in such computations 
capital is usually being set by reference to quantiles of an underlying probability distribution. We 
therefore need to combine the copula with some assumed marginal distributions, i.e. the copula in 
isolation provides insufficient information to permit a full aggregation of risk capital amounts. We 
might carry out the relevant calculations using simulations and then determine, say, the VaR from the 
combination of exposures based on these simulations. Please bear in mind that overall VaR calculated 
in such a manner may not respect usual axioms regarding diversification (see section 2) because the 
overall joint distribution may not then be coming from the elliptical family of distributions. 
 
6.9 Selecting between copulas 
 
If we decide to use copulas then it will generally be necessary to select between them. Typically a 
particular copula family deemed likely to be representative of the data is chosen with different 
members of the family being parameterised in a suitable fashion. It then becomes possible to use 
standard statistical distribution fitting techniques to choose which member of the family best fits the 
observed data. Two points to note are: 
 
(a) If the fitting of the copula is separated from the fitting of the marginals then the copula will 

be wholly driven by the ranking of the observations, rather than by their magnitude. This 
means that non-parametric measures of correlation are more relevant than the traditional 
(Pearson) correlation coefficient. The two most commonly used are Spearman’s rank 
correlation coefficient and Kendal’s tau which conveniently happen to provide maximum 
likelihood estimators for certain specific (bivariate) copula family parameters. These measures 
of co-dependency are defined as follows for two underlying (paired) data series 𝑥𝑡 and 𝑦𝑡 each 
consisting of 𝑛 observations: 

 
Spearman’s rank correlation coefficient: 

 

𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =
∑ (𝑞𝑡 − 𝑞̅)(𝑟𝑡 − 𝑟̅)
𝑛
𝑡=1

√∑ (𝑞𝑡 − 𝑞̅)
2𝑛

𝑡=1 . ∑ (𝑟𝑡 − 𝑟̅)
2𝑛

𝑡=1

   𝑤ℎ𝑒𝑟𝑒 𝑞̅ =
1

𝑛
∑𝑞𝑡

𝑛

𝑡=1

 𝑒𝑡𝑐. 

 
where 𝑞𝑡 and 𝑟𝑡 are the ranks within 𝑥 and 𝑦 of 𝑥𝑡 and 𝑦𝑡 respectively 

 
Kendall’s tau: 

 

𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

1
2𝑛
(𝑛 − 1)

 

 
where computation is taken over all 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2,… , 𝑛 with 𝑖 ≠ 𝑗 and (for the 

moment ignoring ties) a concordant pair is a case where (𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗) 𝑜𝑟 (𝑥𝑖 <

𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗) and a discordant pair is a case where (𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗) 𝑜𝑟 (𝑥𝑖 <

𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗). 

 
There are various possible ways of handling ties in these two non-parametric measures of 
correlation (ties should not in practice arise if the random variables really are continuous). 

 
(b) If the reason that copulas are being used is primarily to have the ‘right’ joint tail behaviour 

then it is important to be aware that fitting copulas based on measures such as the ones 
referred to above may give too much weight to the structure of the copula in the ‘wrong’ part 
of the distribution. This mirrors issues raised in section 2 with Cornish-Fisher expansions.  
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6.10 Further comments 
 
Copulas have become the conventional more sophisticated way of handling co-dependency in cases 
where a multivariate Normal distribution seems inappropriate. In practice, however, they involve a 
considerable leap in technical complexity, making it harder to estimate their parameter inputs reliably. 
Regulatory frameworks often therefore revert to covariance (i.e. correlation) based methodologies 
with the covariance / correlation matrix adjusted in a prudent manner to achieve a desired outcome. 
 
For example, the standard formula SCR for Solvency II involves a covariance-based risk aggregation 
(except for Operational Risk, the charge for which is added to the covariance-based combination of 
the others). A further reason for avoiding undue complexity in the step that incorporates co-
dependency is that the individual risk capital charges may themselves be derived via nested stress 
tests (e.g. they may involve adopting whichever is the more onerous of an up or a down shift in the 
relevant input element). Thus, the inputs may no longer be easily translated into the marginal of a 
multidimensional probability distribution (except a rather artificial one), making the theoretical 
arguments for combining them using a copula somewhat weaker. 
 
An over-focus on copulas also has other possible disadvantages, as explained in Kemp (2010): 
 
- Visually, they have some undesirable consequences, in that it is not easy to tell from them 

where any divergence from Normality is most pronounced. 
 
- Whilst it is mathematically valid to split a multivariate distribution into its marginal and its 

copula, there is no intrinsic reason to expect the impact on fat-tailed behaviour and hence 
propensity for extreme events to split in the same manner. Thus, they do not necessarily 
encourage the ‘holistic’ analysis of exposures that is a cornerstone of ERM. 

 

7. Extreme value theory 
 
7.1 Introduction 
 
The topic of extreme events is particularly important for students and appliers of Enterprise Risk 
Management, particularly if their role has a strong focus on downside risk mitigation. Typically, the 
events that are most problematic and thus most likely to stick in the minds of the bosses or clients of 
such individuals are ‘extreme’ events, i.e. ones that are unusually severe. It is widely accepted that 
these occur more often than would be the case if the world behaved ‘normally’. 
 
Extreme value theory (EVT) is a well-established branch of statistics that has been employed in 
insurance problems for many years but has only more recently been applied in a risk management 
context. The main contributions of EVT are to define and describe a set of limiting distributions which, 
if certain regularity conditions apply, characterise the limiting behaviour of the tail of a distribution. 
 
Unfortunately, these regularity conditions are rather more restrictive than they appear at first sight. 
This means that EVT needs to be approached with some caution for some of the tasks to which it may 
be applied within the field of risk management. The reasons are explored further in Kemp (2010) and 
essentially arise because application of EVT involves extrapolation into the tail of a distribution. 
 
If there is some inherent underlying physical process at work which we can reasonably assume 
operates stably through time then this type of extrapolation may have a strong theoretical underpin. 
For example, we might assume that the distribution of magnitudes of large earthquakes does exhibit 

http://www.nematrian.com/References.aspx?Ref=Kemp2010
http://www.nematrian.com/References.aspx?Ref=Kemp2010
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some sort of regularity given the geological processes involved. However, if the assumption of time 
stability is suspect, as might be the case with extreme events in financial markets driven primarily by 
human behavioural biases then the theoretical grounds for believing that EVT is a reliable 
extrapolation tool may be weaker. This of course depends on whether you think that the impacts of 
such behavioural biases are predictable in terms of their impact on financial markets. 
 
There are certain other flaws with how EVT is typically treated in texts relating to ERM. For example, 
EVT is often developed by describing the three different EVT distributional forms (Gumbel, Fréchet 
and Weibull or, for VaR-style risk management purposes, more commonly corresponding variants of 
the generalised Pareto distribution) and then developing ways of identifying which one is relevant for 
the distribution in question. However, the tail behaviour may not actually converge at all, a point rarely 
highlighted in such texts. We show below a stylised way, involving quantile-quantile plots, of creating 
a distributional form which has no limiting tail behaviour of the sort required for EVT to apply. For 
traditional EVT to apply we also need the tail behaviour to converge in a specific way since it is also 
possible to extrapolate using any selected distributional family and not just the generalised Pareto 
distribution typically viewed as relevant within EVT, see e.g. Kemp (2013). 
 

 
 
In what follows we will assume that (traditional) EVT can validly be applied to the problem in hand, 
i.e. that the relevant regularity conditions are satisfied. 
 
7.2 EVT variants 
 
There are two main variants of EVT. 
 
(a) The first, involving block maxima, describes the behaviour of, say, the largest daily loss over a 

period such as a month and indicates how these block maxima converge asymptotically to a 
distribution with a relatively simple form. 

 
(b) The second, involving peaks-over-thresholds (also called threshold exceedances) indicates that 

the distribution of losses over some threshold also converges, as the threshold is pushed out 
into the tail of the distribution, to a relatively simple form. This is the type of EVT most usually 
applied to VaR-style risk management problems. 

 
More formally, suppose we have a set of portfolio losses, 𝑥𝑡, measured over time (and assumed to be 
independent). EVT provides two closely related sets of results relating to: 
 
(1) Distributions of block maxima, i.e. 𝑚𝑛 which is a random variable corresponding to the block 

maximum for blocks of 𝑥𝑡 of length 𝑛, so the first realisation of 𝑚𝑛 is given by 𝑚𝑛,1 =

max(𝑥1, … , 𝑥𝑛), the second by 𝑚𝑛,2 = max(𝑥𝑛+1, … , 𝑥2𝑛) etc; and 
 

Red and blue lines are QQ-plots of distributions with different tail indices
Choose distribution which flits between them
i.e. goes from A to B to C to D to E to F to G to H to I … 

A

B

C

D

E

F

G

H

I

Constructing a distribution with no limiting tail index

http://www.nematrian.com/References.aspx?Ref=Kemp2013
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(2) Distributions of excesses, i.e. 𝑦𝑗 ≡ 𝑥𝑗 − 𝑢 where 𝑢 is a predetermined high threshold and the 

𝑥𝑗 are realisations that exceed 𝑢. 

 
7.3 Block maxima results 
 
The main result for block maxima is that if i.i.d. random variables 𝑥𝑖 have cdf 𝐹(𝑥) and there also exist 
sequences {𝑐𝑛}, 𝑐𝑛 > 0 and {𝑑𝑛} and a cdf 𝐻(𝑥) such that: 
 

lim
𝑛→∞

𝑃𝑟 (
𝑚𝑛 − 𝑑𝑛
𝑐𝑛

≤ 𝑥) = 𝐻(𝑥) 

 
where 𝑚𝑛 is the random variable corresponding to the block maximum for blocks of such variables of 
length 𝑛 then then 𝐹 is said to be in the maximum domain of attraction (MDA) of 𝐻, written 𝐹 ∈
𝑀𝐷𝐴(𝐻) and (the Fisher-Tippett theorem) 𝐻 comes from the generalised extreme value (GEV) family 
of distributions. 
 
GEV distributions in general have three parameters, 𝐺𝐸𝑉(𝜉, 𝜇, 𝜎), including a tail index, a location and 

a scale parameter. However if we replace 𝑐𝑖 by 𝑐̃𝑖 = 𝜎𝑐𝑖  and 𝑑𝑖  by 𝑑̃𝑖 = 𝑑𝑖 + 𝜇𝑐𝑖  we find that  𝐹 ∈

𝑀𝐷𝐴(𝐻𝜉) and 𝐻 = 𝐺𝐸𝑉(𝜉), the one-parameter variant with 𝜇 = 0 and 𝜎 = 1. 

 
The cdf of 𝐺𝐸𝑉(𝜉, 𝜇, 𝜎) is: 
  

𝐹(𝑥) = exp(−(1 + 𝜉 (
𝑥 − 𝜇

𝜎
))

−1 𝜉⁄

) 

 
(or if 𝜉 = 0 the limit of the above as 𝜉 → 0).  
 
𝜉 defines the tail behaviour of the distribution. The sub-families defined by 𝜉 = 0 (Type I), 𝜉 > 0 (Type 
II) and 𝜉 < 0 (Type III) correspond to the Gumbel, Frechét and Weibull families respectively. 
 
Most well-known statistical distributions have well defined tail behaviours that are characterised by 
EVT. For example, the extreme values of normally and lognormally distributed random variables 
converge to Gumbel random variables (i.e. have 𝜉 = 0), while Student’s t and uniform random 
variables converge to the Frechét and Weibull distributions respectively (i.e. have 𝜉 > 0 and 𝜉 < 0 
respectively). 
 
7.4 Peaks over thresholds results 
 
The second set of EVT results (relating to distribution of excesses) is probably more directly applicable 
to estimation of VaRs and the like. The main result here is the Pickands-Balkema-de Haan theorem. 
 
Theorem. Let 𝐹𝑢 be defined as 𝐹𝑢(𝑦) = 𝑃𝑟(𝑥 − 𝑢 < 𝑦|𝑥 > 𝑢) where 𝑦 = 𝑥 − 𝑢 for those cases 𝑥 > 𝑢 
and let 𝑥𝐹 be the maximum limiting value of the random variable 𝑋 then we can find a function 𝛽(𝑢) 
such that 
 

lim
𝑢→𝑥𝐹

( sup
0≤𝑦<𝑥𝐹−𝑢

|𝐹𝑢(𝑦) − 𝐺𝜉,𝛽(𝑢)(𝑦)|) = 0 

 

if and only if 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉), i.e. under the same hypotheses as applied to the block maxima results. 

 

http://www.nematrian.com/SiteSearch?t=Fisher-Tippett
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Here 𝐺𝜉,𝛽(𝑢) is the generalised Pareto distribution with zero mean, i.e. 𝐺𝜉,0,𝛽and has: 

 

𝐺𝜉,𝛽 =

{
 

 1 − (1 + 𝜉
𝑥

𝛽
)
−1 𝜉⁄

𝜉 ≠ 0

1 − exp (−
𝑥

𝛽
) 𝜉 = 0

 

 
7.5 Estimating tail distributions using maximum likelihood 
 
To use the results of the previous section to estimate VaRs we first need to fit a GPD to the data. We 
will suppose that the data comes from a Fréchet distribution (the Weibull distribution has a maximum 
upper limit which will not normally be consistent with financial market data of the sort typically used 
for VaR purposes). We therefore approximate the data using: 
 

𝐹𝑢 ≈ 𝐺𝜉,𝛽 

 
for some suitable 𝜉 ≥ 0 and 𝛽 > 0. 
 
One way of proceeding using maximum likelihood estimation (and assuming that the tail distribution 
is in line with a GPD) is as follows. Suppose we have 𝑛 observations of which 𝑛𝑢 is the number of 
excesses which have 𝑥𝑖 exceeding the threshold 𝑢 (for which 𝑦𝑖  is then defined by 𝑦𝑖 = 𝑥𝑖 − 𝑢. We 
assume that the excesses are distributed according to 𝐺𝜉,𝛽 and set 𝜏 = −𝜉 𝛽⁄ . Then ML estimates are 

found by solving: 
 

𝜉 =
1

𝑛𝑢
∑log(1 − 𝜏̂𝑦𝑖)

𝑛𝑢

𝑖=1

 

1

𝜏̂
+
1

𝑛𝑢
(
1

𝜉
+ 1)∑

𝑦𝑖
1 − 𝜏̂𝑦𝑖

𝑛𝑢

𝑖=1

= 0 

𝛽̂ = −𝜉 𝜏̂⁄  
 
Suppose we define the complement of a cdf as 𝐹̅𝑢(𝑦) ≡ 1 − 𝐹𝑢(𝑦). We note that 𝐹̅(𝑥) = 𝐹̅(𝑢)𝐹̅𝑢(𝑦). 
Having estimated 𝐹̅𝑢(𝑦) via maximum likelihood we are left with estimating 𝐹̅(𝑢). We can do this by 
using the empirical tail, i.e.: 
 

𝐹̅(𝑢)𝑀𝐿 =
𝑛𝑢
𝑛

 

 
Combining the estimates we find: 
 

𝐹̅(𝑥)𝑀𝐿 = 𝐹̅(𝑢 + 𝑦)𝑀𝐿 =
𝑛𝑢
𝑛
(1 + 𝜉

𝑦

𝛽̂
)

−1 𝜉̂⁄

 

 
From this we can estimate the 𝑝-quantile as: 
 

𝑥𝑝 = 𝑢 +
𝛽̂

𝜉
((

𝑛

𝑛𝑢
(1 − 𝑝))

−𝜉̂

− 1) 
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The only remaining problem is to choose the threshold 𝑢, ideally sufficiently far into the tail that the 
limiting tail distribution has largely been reached but not so far that we have little or no observations 
left in the tail. Typically this is done empirically using e.g. graphical methods. One such method relies 

on the mean excess function, 𝑒(𝑢) ≡ 𝐸(𝑥 − 𝑢|𝑥 > 𝑢). For 𝐺𝜉,𝛽 this has 𝑒(𝑢) =
𝛽+𝜉𝑢

1−𝜉
 so in the tail 

should be linear. We can thus use the empirical mean excess function defined below to investigate 
the choice of 𝑢: 
 

𝑒𝑛(𝑢) =
1

𝑛𝑢
∑ (𝑥𝑖 − 𝑢)

𝑖∈𝑆𝑢(𝑢)

 

 
where  𝑆𝑢(𝑢) = {𝑖: 𝑥𝑖 > 𝑢}. 
 
7.6 Hill estimator techniques 
 
An alternative and somewhat mathematically simpler approach is based on the Hill estimate of the 
tail parameter 𝛼 = 1 𝜉⁄ . We again assume that the limiting tail distribution is the Fréchet distribution 
and we assume that the GPD can be approximated by the Pareto distribution, 𝐹(𝑧) = 1 − 𝑥−𝛼. The 
maximum likelihood estimator for 𝛼, known in this situation as the Hill estimator, is: 
 

𝛼̂(𝐻) = 𝛼̂𝑘,𝑛
(𝐻)

= (
1

𝑘
∑(log 𝑥(𝑗) − log 𝑥(𝑘))

𝑘

𝑗=1

)

−1

 

 
where the 𝑥(𝑗) are the ordered observations and there are 𝑘 (= 𝑛𝑢) observations in the tail of the 

distribution (𝑘 depends on 𝑢). 
 
An estimator for the 𝑝-quantile is then: 
 

𝑥𝑝
(𝐻) = 𝑥(𝑘) (

𝑛

𝑘
(1 − 𝑝))

−1 𝛼̂𝑘,𝑛
(𝐻)⁄

 

 
As with the direct maximum likelihood approach, a crucial choice to make in computing the estimator 
is the threshold 𝑢 and hence the value of 𝑘 = 𝑛𝑢. One graphical approach to the selection of 𝑢 is to 

examine so-called Hill plots which involve plotting 𝛼̂𝑘,𝑛
(𝐻) against 𝑘 and selecting the ‘optimal’ 𝑘 (that 

best trades-off bias versus variance of the estimator) as the largest value for 𝑘 for which the 𝛼̂𝑘,𝑛
(𝐻)(𝑘) 

seems to be constant. 
 
7.7 Generalisations 
 
EVT as described above relies on specific regularity conditions which do not always apply in practice. 
If it is known that the tail can be approximated by some suitable member of a given distributional 
family then the tail behaviour can be derived by selecting the relevant family member using standard 
statistical criteria such as maximum likelihood. Traditional EVT as above can in effect be viewed as a 
special case of this approach, using the generalised Pareto (or the generalised extreme value) 
distributional family. If members of the selected distributional family can be manipulated relatively 
easily (e.g. via a suitable numerical package) then there may be little practical benefit in limiting 
oneself to the GPD, if the regularity conditions needed for it to apply are suspect. For further details 
see e.g. Kemp (2013). 
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