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2Efficient Monte Carlo simulation 

◼ Introduction

◼ Proposed simulation approach: tri-segmented Monte Carlo

◼ Illustrative exercise
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3Introduction (1)

◼ Financial firms (and their regulators) often need estimates of portfolio values 

or of risk measures such as Value-at-risk (VaR), expected shortfall, …

◼ Sometimes these can be calculated analytically but more usually larger firms need 

to use simulation techniques. Similar picture in non-financial field.

◼ Traditional workhorse for this purpose is Monte Carlo simulation

◼ In most basic form (equally probable) simulations are drawn randomly from 

relevant probability distribution characterising economic drivers impacting the 

(present) value of the (overall) portfolio payoff

◼ Accuracy typically improves only in proportion to square root of number of 

simulations used, i.e. for accuracy 𝜀 requires 𝑂 𝜀−2 sample draws

◼ For large / complex books (especially with nested calculations), runtimes can be 

excessive to obtain an adequately low level of error
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4Introduction (2)

◼ Researchers have explored many ways of speeding up basic Monte Carlo 

including:

◼ Antithetic variables (and other “moment fitting” techniques): e.g. if 𝑆+ = 𝜇 + 𝑥
included in simulation set then also include 𝑆− = 𝜇 − 𝑥

◼ Control variate techniques: approximation ෨𝑃 to true payoff 𝑃 is identified where ෨𝑃

is quick to calculate and we estimate e.g. 𝔼 𝑃 as 𝔼 ෨𝑃 + 𝔼 𝑃 − ෨𝑃

◼ Importance sampling (aka stratified sampling): preferentially draw samples from 

parts of underlying distribution expected to contribute most to error in the end 

answer, and adjust weights accordingly

◼ Low discrepancy sequences: select points more uniformly across probability 

distribution space than would arise with pure random Monte Carlo draws

◼ Or throw (parallelised) computer resources (e.g. in the cloud), symbolic 

engines, quantum computers, … at the problem
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5Introduction (3)

◼ Problem most acute when runtime cost of applying a given sample to overall 

portfolio is very large relative to runtime cost of drawing that sample from its 

(assumed given) underlying probability distribution

◼ Kemp (2019) “Improving valuation runtimes for derivative books” (Nematrian) 

proposed a “targeted quantile-spacing approach” which can address this:

◼ Prepare a very large ‘extended’ simulation set, size 𝑁 and use it to prepare a 

much smaller ‘collated’ simulation set, size 𝑛, with only the collated set actually 

applied to the portfolio

◼ Simplest case, sort the 𝑁 extended simulation set members and select for the 

collated set ones that are equally spaced in quantile terms across this set

◼ Unfortunately, Kemp (2019) approach only works well if the problem largely 

one dimensional, which is typically not the case for risk metrics such as VaR
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6Proposed simulation approach: tri-segmented Monte Carlo

◼ TSMC combines control variate methods with methods like Kemp (2019)

◼ Randomly draw three different simulations sets from underlying probability 

distribution

◼ “Underlying” set, 𝑍𝑢, used for estimating ෨𝑃 (or equivalent)

◼ “Added” set, 𝑍𝑎, used for estimating correction because ෨𝑃 ≠ 𝑃

◼ “Extended” set, 𝑍𝑒, used for estimating 𝔼 ෨𝑃 or equivalent (c.f. Kemp (2019))

◼ Segment probability distribution space by the nearest point in 𝑍𝑢 (“Voroni

cells”) and choose ෨𝑃 to be best fit to nearest say 𝑛𝑓𝑖𝑡 points of 𝑍𝑢 to that cell

◼ Choose numbers in sets 𝑁𝑢, 𝑁𝑎 and 𝑁𝑒 so that 𝑁𝑢 ≪ 𝑁𝑒 and 𝑁𝑎 ≪ 𝑁𝑒. 

Evaluate 𝑃 only 𝑁𝑢 + 𝑁𝑒 times, but ෨𝑃 many more times
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7Step 1 (for portfolio valuation purposes)

◼ Identify an underlying simulation set 

𝑍𝑢 and use it to create Voroni cells and in 

each cell an approximation ෨𝑃 to the true 

payoff 𝑃.

◼ Voroni cells partition by the point in 𝑍𝑢
nearest to the relevant point in the space

◼ Best fit ෨𝑃 using generalised linear 

regression and suitable basis functions, 

fitting to nearest other points in 𝑍𝑢

◼ Constrain ෨𝑃 so that ෨𝑃 𝑆𝑖
𝑢 = 𝑃 𝑆𝑖

𝑢 for each 

𝑆𝑖
𝑢 that is a member of 𝑍𝑢 (all other things 

being equal, 𝑆𝑖
𝑢 should be towards the 

middle of the relevant Voroni cell)
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8Step 2 (for portfolio valuation purposes)

◼ Identify an extended simulation 

set 𝑍𝑒 and estimate 𝔼 ෨𝑃 , the 

expected value of ෨𝑃, by averaging 

across these simulations

http://www.nematrian.com/


Nematrian © Nematrian Limited 2022

9Step 3 (for portfolio valuation purposes)

◼ Identify an added simulation set 𝑍𝑎
and use it to estimate 𝔼 𝑃 − ෨𝑃 , the 

expected value of 𝑃 − ෨𝑃

◼ In practice probably do step 1 and 3 

before step 2, to do all portfolio 

evaluations at the same time

◼ Potentially re-run for error estimation 

and/or bootstrap by randomly 

repartitioning 𝑍𝑢 ∪ 𝑍𝑎 between 

underlying and added simulation 

sets
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10Further comments

◼ For VaR:

◼ Focus on losses, 𝐿, rather than present values, 𝑃. ෨𝐿 will be very close to 𝐿 for 

points very near to a 𝑆𝑖
𝑢 but could on average be biased in relevant VaR tail

◼ Could just assume a constant bias, but better seems to be to assume that there is 

a (e.g. linear) dependency between 𝐿 𝑆 − ෨𝐿 𝑆 and ෨𝐿 𝑆 . Estimate VaR from the 

relevant quantile of the adjusted ෨𝐿 𝑆 for the extended simulation set

◼ Simplest choice of ෨𝑃 is constant (= 𝑃 𝑆𝑖
𝑢 ) within the cell defined by 𝑆𝑖

𝑢

◼ With this choice, subject to suitable regularity conditions, if 𝑁𝑢 and 𝑁𝑎 are large 

enough then, for large enough 𝑁𝑒, error will be less than for basic Monte Carlo

◼ I.e. always optimal to use TSMC for large enough simulation sets and sufficiently 

time consuming to calculate payoffs (but unclear how large 𝑁𝑢 and 𝑁𝑎 need to be)

◼ More sophisticated choices for ෨𝑃 (or ෨𝐿) likely to improve on constant in-cell ෨𝑃 (or ෨𝐿)
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11Illustrative exercise

◼ Test using a hypothetical moderate (i.e. 10) dimensional problem involving 

reasonably well diversified book capable of being valued analytically

◼ 40 unit European-style options each on one of 2 distinct rolled up (i.e. non-

dividend paying) indices following geometric Brownian motions (volatilities 10% pa 

and 20% pa), terms 1, 2, 3, 4 or 5 years, strikes 70%, 90%, 110% or 130%, 

interest rates assumed zero at outset and thereafter

◼ Distances between points in 𝑚-dimensional sample space (here 𝑚 = 10) 

taken as Cartesian distance 𝑆𝐴 − 𝑆𝐵 = σ𝑗=1
𝑚 𝑆𝐴,𝑗 − 𝑆𝐵,𝑗

2

◼ ෨𝑃 chosen to involve best fit combinations of constant, linear, quadratic and 

“hockey stick” basis functions.

◼ Simpler ෨𝑃 can be fitted to fewer (so closer) 𝑛𝑓𝑖𝑡 nearby points but otherwise likely 

to fit less well. Analogy with least-squares Monte Carlo. Including quadratic and 

“hockey stick” basis functions seems particularly helpful.
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12Estimated errors for portfolio values for various approaches

◼ Charts show average and ± 1 

s.d. for 32 runs per approach 

(as fraction of true portfolio 

value):

◼ Basic Monte Carlo shows 

𝑂 𝜀−2 dependency

◼ Each instrument one-

dimensional, can be valued 

well using high order moment 

fitting or Kemp (2019)

◼ TSMC m/n provides error akin 

to BMC using n simulations 

but only evaluating portfolio 

payoff m times

Source. Nematrian. Nomenclature:

- BMC n: Basic Monte Carlo with n simulations

- TMSC m/n: Tri-segmented Monte Carlo 𝑚 = 𝑁𝑢 + 𝑁𝑎, 𝑛 = 𝑁𝑒 (𝑁𝑢 =
𝑛

4
)

- MF1, MF2, MFH: moment fitting approach if used where MF1 (fit 

observed to analytical means), MF2 (fit to analytical means + sds), 

MFH (fit to multiple lower moments); BS = bootstrapped from one of 3 

singe selections of 𝑍𝑢 ∪ 𝑍𝑎

Basic 
Monte 
Carlo

BMC 
with 

moment 
fitting

Tri-segmented 
Monte Carlo
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13Corresponding results for 99.5% runoff loss quantiles

◼ C.f. “runoff” VaR (VaR to 

maturity)

◼ Basic Monte Carlo still shows 

𝑂 𝜀−2 dependency

– Moment fitting less effective 

(problem no longer 1-

dimensional)

◼ TSMC m/n error still like BMC 

n, but with a modest bias

◼ Bootstrapping TSMC seems to 

provide reasonable error 

estimates

Source: Nematrian. Nomenclature:

- BMC n: Basic Monte Carlo with n simulations

- TMSC m/n: Tri-segmented Monte Carlo 𝑚 = 𝑁𝑢 + 𝑁𝑎, 𝑛 = 𝑁𝑒 (𝑁𝑢 =
𝑛

4
)

- MF1, MF2, MFH: moment fitting approach if used where MF1 (fit 

observed to analytical means), MF2 (fit to analytical means + sds), 

MFH (fit to multiple lower moments); BS = bootstrapped from one of 3 

singe selections of 𝑍𝑢 ∪ 𝑍𝑎

Basic 
Monte 
Carlo

Tri-segmented 
Monte Carlo

BMC (MF)
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14Corresponding results for one-year 99.5% loss quantiles

◼ C.f. “1 year” VaR

◼ Higher runtimes as in general 

a nested calculation (inner 

simulation to value portfolio at 

end year 1 conditional on 

outcome during year)

– In this situation we can do the 

inner calculation analytically 

to estimate ‘true’ answer 

more precisely (see right 

hand end of chart)

◼ TSMC m/n error still like BMC 

n

◼ But again TSMC seems to 

exhibit a modest bias

Source: Nematrian. Nomenclature:

- BMC n (y) and TSMC m/n (y): n overall simulations (for TSMC 

simulations within extended simulation set) with y inner simulations per 

outer simulation

- BMC-SA is “semi-analytical”, i.e. year 1 value derived analytically for 

each instrument, simulation applied only to year 1 evolution
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15VaR bias and other meta-parameters such as 𝒏𝒇𝒊𝒕

◼ Analyse 𝐿 𝑆𝑗
𝑎 − ෨𝐿 𝑆𝑗

𝑎 to infer likely 

behaviour of 𝐿 𝑆𝑖
𝑒 − ෨𝐿 𝑆𝑖

𝑒

– E.g. plot to visualise dependency on 
෨𝐿 𝑆𝑗

𝑎 , to determine most appropriate 

form of VaR bias adjustment

– E.g. quantify average and spread of 

𝑃 𝑆𝑗
𝑎 − ෨𝑃 𝑆𝑗

𝑎 or 𝐿 𝑆𝑗
𝑎 − ෨𝐿 𝑆𝑗

𝑎 to 

place practical limits on VaR error, to 

estimate likely control variate 

variance ratio for different meta-

parameters (to assist in selection of 

𝑁𝑎 and 𝑁𝑒 relative to 𝑁𝑢) and to help 

select basis function types

◼ 𝑍𝑢 akin to a “training” set, 𝑍𝑎 akin to 

a “testing” set

Source: Nematrian. In chart, x-axis is ෨𝐿 𝑆𝑗
𝑎 (as multiple of 

overall analytically derived portfolio value), y-axis is 𝐿 𝑆𝑗
𝑎 −

෨𝐿 𝑆𝑗
𝑎 . 𝑆𝑗

𝑎 are the points in 𝑍𝑎. 
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16Conclusions

◼ For sufficiently complex portfolios / nested calculations, tri-segmented Monte 

Carlo simulation always in the limit better runtime-wise than basic Monte 

Carlo

◼ If a complex portfolio behaved like the book illustrated here then significant 

runtime improvements might be achievable (64-fold or better)

◼ Finding the Voroni cell in which a given simulation sample lies can be time 

consuming but can be parallelised

◼ For actuaries, approach is akin to proxy modelling of the simulation set rather 

than of the liability profile

◼ Proxying the simulation set may be easier to justify, e.g. by using analyses as per 

previous slide
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